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Outlines

1. Electric Dipole radiation

2. Magnetic Dipole Radiation

3. Point Charge

4. Synchrotron Radiation
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What is electromagnetic radiation?

From Chap. 2 to Chap. 8, we deal with electromagnetic 
fields---both static and time dependent.  Only in Chap. 9, 
we started studying electromagnetic waves that propagate 
through space, where , and carries energy  away 
form the source to infinite far away.  These waves are 
called electromagnetic radiation.

In chap. 9, we deal with propagation of waves through 
space.  Here we want to study the origin of these EM 
radiation.  We assume that sources of radiation are 
localized and finite.

The signature of radiation is an irreversible flow of 
energy away from the source.
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⋅ ·

lim
→Power radiated

For static fields, ∝ (point charge), and ∝
	 ) such that

lim
→

· → No radiation!!

In Jefimenko’s equation, the time dependent field is ∝ 	 , 

which is the radiation term. Here we will study several 
simple time-varying sources that emit radiation.
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Electric dipole radiation

Assume an oscillating dipole 

q ,

We can write down the retarded potential as in eq. (11-5)

, 					

where

∓ 					 6

Law of cosines
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First approximation ≫ Ideal dipole

≅ ∓ ≅ ∓

			

∓ 		
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2nd Approximation (Long wavelength approximation)

. , and

Equation (4) on page 7 can be simplified

∓ /

So equation (1) can be re-written

, 			
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≫ ≫ ≫

where [  ] is 
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Since

· ·
· ·

			

and

			

The 1st and 3rd terms of eq. (5) can be simplified as

The 2nd and 4th terms of equation (5) can be further simplified as
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Now, we substitute equations (6) and (7) into eq. (5)

, 				

This is the potential due to an oscillating dipole.  We 
shall see later that the 1st term is the radiation term, 
while the 2nd term is the static dipole term.  If we let 
→ , equation (8) reduces to statics case, namely

· ·
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3rd Approximation ≫ (Far field)

So equation (8) becomes

						

In radiation phenomenon, there are three length scales 
that are important:

1. Near field (zone)                         ≪ 	 ≪ 	
2. Intermediate field (zone) ≪ 	
3. Radiation field (far field) 	 ≪ 	 ≪
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Vector potential

The vector potential is determined by the current

,

/

/

			 .

This is not an easy integral, we assume that ≫ (The 
ideal dipole approximation), and will take the average 
value of r during the integral, we end up with 

, ≅ 						
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From equations (9) and (10), we are in a position to find 
the fields through the following:

and

From symmetry, we can see that both scalar and vector 
potentials do not have dependence
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For ≫ , (far field approximation) the 1st and the 3rd

term drop out, we end up with 

≅ 						

Similarly the far field approximation for is

				

Combining eq. (12) and (13)
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Meanwhile

		

Again, for ≫ , we drop the 2nd term

· 					

Equations (14) and (16) represent the EM waves radiate 
out from the oscillating electrical dipole.  We can see 
that and are in phase and .
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The Poynting vector is

/ 				

The intensity of the radiation is given by the time-average 
of the Poynting vector.

· 					
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Total power radiated is given by

·

·
				

The electric dipole radiation has the following characteristics.

1. The radiation is along the 	, radially outward.
2. The depend agrees with the energy conservation.
3. The dependence.  More energy radiated at 90°.
4. The energy radiated is ∝ .  This is an important 

physics law----Rayleigh scattering.  It explains why 
the sky is blue, and sunset is reddish. 17
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Magnetic Dipole Radiation

A wire loop of radius b carries a 
current, 

			

The magnetic dipole associated with this current is given 
by

·

The scalar potential is zero.  The vector potential is given 
by the retarded potential

,
/

ℓ′				
19
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We choose the observation point P on the x-z plane, and the 
direction of at P is in the y-direction by symmetry 
argument

, ̂
/

′

·

	is the angle between and 

′

· · ′

· · ′				
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1st Approximation (Ideal dipole and ≫

Equation (22) can be viewed as 

· ′

· ′

⁄ ′ ⁄ ′

· ′
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2nd Approximation (Long wavelength approximation) 

≫ The previous equation becomes

/ /

Substitute the above eq. into eq. (21)

,

						

Eq. (23) should be compared with eq. (8), we can see 
that the 1st term is the static term while the 2nd term is 
the radiation term. As → , only the static term left.
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3rd approximation (Far field such that ≫ )

We drop the 1st term of eq. (23)

, /

From we obtain both and fields as follow:
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The Poynting vector is defend

/ 			

The time-average power radiated is

					

Integrating over the solid angle, the total power radiated is

·

						 24
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·

				

Electric dipole radiation vs. Magnetic dipole radiation.

Let
and  

≪
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Radiation from an arbitrary source

Now we want to extend the previous 
derivation to an arbitrary charge 
distribution, 

,
,

					

Where is given by

′ · ′							

Next we will do the multiple expansion to the retarded 
potential of an arbitrary source—eq. (27), and apply 
those approximations along the way.
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1st Approximation (Source is localized and finite)( ≫ ′

≅
· ′

Eq. (28)

≅
·

			

, ≅ ′,
· ′

Define the retarded time at the origin as 

≡

And expand 	 	 	 	 	 	
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, ≅ , ,
·

. .

We drop all the higher order terms which amount to the 
long wavelength approximation ( ≫ ′ .

Substitute (29) (30) into eq. (27)

, ≅ , · , ′

· , ′ ⋯										

Compare with equation (3.96) of Griffiths (Multipole expansion!!!)
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We can see from eq. (31), the first integral is the total net 
charge, the second integral is the net electric dipole 
moment evaluated at , and the 3rd term is the time 
derivative of the dipole moment…

, ≅
· ·

		

Next, we will try to find the vector potential , , we 
will start out with the retarded vector potential

,
′, /

′ 						

Again, this is a difficult integration.  We will use similar 
approximation used in the dipole radiation.
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The 1st approximation we made is that ≫ ′, so we let 
≅ [note that this is zero order approximation], and 

eq. (33) becomes

, ≅ , ′

According to Problem 5.7 (page 223), the above eq. can be 
reduced to

, ≅ 						
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, ≅ 			

, ≅ 				

From eq. (32) and (34), we can find 	field and field by

,

3rd approximation  Drop terms in and 

So we only deal with the 3rd term in eq. (32)

≅ ·
·

≅
·

Combine with the results we obtained from and , we 

obtain

4/12/2017

Assuming that is in the direction, we can write eq. 
(35) and (36) in the spherical coordinates

, , ≅ 			

, , ≅ 			

The Poynting vector follows and has the same geometry 
as the eq. (18) on page 16.

≅ 			

≅ · 						
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Example 11.2

Assume we have a simple oscillating electric dipole

Then eq. (40) becomes

≅

Take time-average, we recover eq. (19) on page 25. 

For point charge, we let , then 

Then eq. (40) becomes

This is the famous Larmor formula: see page 38. 

, 4/12/2017

Summary

1. The dominating term in the multiple expansion of 
arbitrary source is the electric dipole radiation. This 
situation is similar to the multiple expansion in the 
static case.

2. No monopole radiation.
3. The next higher order terms are magnetic dipole 

radiation and electric quadrupole radiation.
4. The Poynting vector is proportional to the square of 

, which is proportional to the acceleration.
5. If we let , eq. (37) becomes the famous 

Larmor formula (11.61) on page 481.
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Power radiated by a point charge

From Chap. 10 we already shown that for a point charge 
with an given trajectory w(t), the fields are given by 
(10.65) and (10.66).

,
·

	

, 						

The Poynting vector is 

Use vector triple product rule, eq. (1.17)
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Not all terms in eq. (43) are radiation terms, as we can 
see from eq. (41)– only the 2nd term contains 
acceleration, here we will only concentrate on this term 

·
				

The 2nd term in eq. (43) can also be dropped because 
radiation can not be in the direction.

			

Assume that ≫ such that 

≅ 				
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≅ · (47)

≅ · 				

Substitute (47) into (45), we obtain

It is not surprising that we obtain a radiation pattern that is 
quite similar to the electric dipole formula of eq. (18) on 
page 15.

The donut shape radiation pattern comes 
from the θ dependence.  The angle θ is 
the angle between and .  Here we do not 
have the dependence, because it is not a 
periodic motion any more.
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The total power radiated is

· 				

Again, this is the Larmor formula we obtained in eq. (40), 
page 32. 

The above formula can be extended to arbitrary velocity, 
the result is given below

·
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Example 11.3
Suppose a point charge in a linear accelerator that moves in a 
straight line with and in the same direction.  Find the angular 
distribution of the radiation and the total power emitted.

Since and are in the same direction,  (assume c >> v)

Substitute into eq. (50) in previous page

·
				

Follow eq. (44) on page 35,

· 39
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Let and both in the z-direction, (linear accelerator)

·

·

Substitute into eq. (50)
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The total power radiated is given by

			

The integral is 2π, let cosθ=x

					

From Gradshteyn & Ryzhik Table of Integrals, let 
z = a+bx

42

C
h

apter 11 R
adiation



4/13/2017

8

4/12/2017

Substitute back into equation (52) we obtain

					

where

Or we can do integration by part for the integral in 
eq. (52)

			

And substitute back into (55) to obtain the result of 
(56). 43
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Problem 11.16

We assume that a point charge is doing a circular motion in 
the x-y plane about the origin.  Find the radiation pattern.

We choose the axes such that

,    and   

· ·

The radiation pattern is given by eq. (11.72) on page 485.

·
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Square the above equation, we end up with

· · · ·

· 				

· 				

· · 			

Substitute (59), (61) (62) and (63) into eq. (60)
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·

·

		

Substitute (59) and (64) back to (58), we end up with
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Radiation Reaction and the Abraham-Lorentz formula 

As a charged particle oscillates and radiates energy away, the 
particle’s kinetic energy decreases.  We can say the radiation exerts a 
force back on the particle, just like action-reaction force pair.  This is 
called radiation reaction, we can also think of it as a damping force, 
which reduces the energy of the particle.   

From eq. (49) on page 37, the Larmor formula gives us the power 
radiated by an oscillating dipole moment,

This is coming from the damping term 

·
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Assume the time average of the previous equation is approximately 
correct,

· (65)

· · ·

The first term on the right side cancels out, so eq. (65) becomes

·

Integration by part

The Abraham-Lorentz Formula

This is not the whole story.


