

Outlines

1. Electric Dipole radiation
2. Magnetic Dipole Radiation
3. Point Charge
4. Synchrotron Radiation

What is electromagnetic radiation?

From Chap. 2 to Chap. 8, we deal with electromagnetic fields---both static and time dependent. Only in Chap. 9, we started studying electromagnetic waves that propagate through space, where $\vec{E} \perp \vec{B}$, and \vec{S} carries energy away form the source to infinite far away. These waves are called electromagnetic radiation.

In chap. 9, we deal with propagation of waves through space. Here we want to study the origin of these EM radiation. We assume that sources of radiation are localized and finite.
The signature of radiation is an irreversible flow of energy away from the source.

$$
P(r)=\oint \vec{S} \cdot \overrightarrow{d a}=\frac{1}{\mu_{o}} \oint(\vec{E} \times \vec{B}) \cdot \overrightarrow{d a}
$$

$$
\text { Power radiated }=\lim _{r \rightarrow \infty} P(r)
$$

For static fields, $E \propto \frac{1}{r^{2}}$ (point charge), and $B \propto \frac{1}{r^{3}}$ (Dipole) such that

$$
\lim _{r \rightarrow \infty} \oint \frac{1}{r^{2}} \cdot \frac{1}{r^{3}} d a \rightarrow 0 \quad \text { No radiation!! }
$$

In Jefimenko's equation, the time dependent field is $\propto \frac{1}{r}$, which is the radiation term. Here we will study several simple time-varying sources that emit radiation.

Electric dipole radiation

Assume an oscillating dipole

$$
q(t)=q_{o} \cos \omega t, \quad q_{+}=q(t), q_{-}=-q(t)
$$

$$
\vec{P}(t)=q(t) \stackrel{\rightharpoonup}{d}=P_{o} \cos \omega t \widehat{k}
$$

We can write down the retarded potential as in eq. (11-5)

$$
V(\stackrel{\rightharpoonup}{r}, t)=\frac{1}{4 \pi \varepsilon_{o}}\left[\frac{q_{o} \cos \left[\omega\left(t-r_{+} / c\right)\right]}{r_{+}}-\frac{q_{o} \cos \left[\omega\left(t-r_{-} / c\right)\right]}{r_{-}}\right]
$$

where

$$
\begin{equation*}
r_{ \pm}=\sqrt{r^{2} \mp r d \cos \theta+\left(\frac{d}{2}\right)^{2}} \tag{2}
\end{equation*}
$$

[^0]

Since

$$
\frac{a}{1-x}-\frac{a}{1+x}=\frac{a(1+x)-a(1-x)}{1-x^{2}}=\frac{2 a x}{1-x^{2}} \approx 2 a x
$$

The $1^{\text {st }}$ and $3^{\text {rd }}$ terms of eq. (5) can be simplified as

$$
\begin{align*}
& \qquad \frac{\cos \omega\left(t-\frac{r}{c}\right)}{r\left(1-\frac{d}{2 r} \cos \theta\right)}-\frac{\cos \omega\left(t-\frac{r}{c}\right)}{r\left(1+\frac{d}{2 r} \cos \theta\right)} \\
& =2 \cdot \frac{\cos \omega\left(t-\frac{r}{c}\right)}{r} \cdot \frac{d}{2 r} \cos \theta=\frac{d \cdot \cos \theta \cdot \cos \omega\left(t-\frac{r}{c}\right)}{r^{2}} \tag{6}\\
& \text { and } \quad \frac{a}{1-x}+\frac{a}{1+x} \approx 2 a
\end{align*}
$$

The $2^{\text {nd }}$ and $4^{\text {th }}$ terms of equation (5) can be further simplified as
$\frac{-[\quad] \sin \omega\left(t-\frac{r}{c}\right)}{r\left(1-\frac{d}{2 r} \cos \theta\right)}+\frac{-[] \sin \omega\left(t-\frac{r}{c}\right)}{r\left(1+\frac{d}{2 r} \cos \theta\right)}=-2[] \sin \omega\left(t-\frac{r}{c}\right)$ (7)

$\underline{2^{\text {nd }} \text { Approximation (Long wavelength approximation) }}$

$$
\begin{gathered}
\lambda \gg d \quad \frac{c}{\omega} \gg d>\frac{d \omega}{c} \\
\cos \left(\frac{\omega d}{2 c} \cos \theta\right) \approx 1.0, \text { and } \sin \left(\frac{\omega d}{2 c} \cos \theta\right) \approx\left(\frac{\omega d}{2 c} \cos \theta\right)
\end{gathered}
$$

Equation (4) on page 7 can be simplified
$\cos \omega\left(t-\frac{r_{ \pm}}{c}\right)=\cos \omega\left(t-\frac{r}{c}\right) \mp\left[\frac{\omega d}{2 c} \cos \theta\right] \sin \omega(t-r / c)$
So equation (1) can be re-written
$V(\vec{r}, t)=\frac{q_{o}}{4 \pi \varepsilon_{o}}\left[\frac{\cos \left(t-\frac{r}{c}\right)-[] \sin \omega\left(t-\frac{r}{c}\right)}{r\left(1-\frac{d}{2 r} \cos \theta\right)}-\frac{\cos \omega\left(t-\frac{r}{c}\right)+[] \sin \omega\left(t-\frac{r}{c}\right)}{r\left(1+\frac{d}{2 r} \cos \theta\right)}\right]$
where [] is $\left[\frac{\omega d}{2 c} \cos \theta\right]$

Now, we substitute equations (6) and (7) into eq. (5)

$$
\begin{equation*}
V(\stackrel{\rightharpoonup}{r}, t)=\frac{q_{o} d \cos \theta}{4 \pi \varepsilon_{o} r}\left[-\frac{\omega}{c} \sin \omega\left(t-\frac{r}{c}\right)+\frac{1}{r} \cos \omega\left(t-\frac{r}{c}\right)\right] \tag{8}
\end{equation*}
$$

This is the potential due to an oscillating dipole. We shall see later that the $1^{\text {st }}$ term is the radiation term, while the $2^{\text {nd }}$ term is the static dipole term. If we let $\omega \rightarrow 0$, equation (8) reduces to statics case, namely

$$
V(\stackrel{\rightharpoonup}{r})=\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{o} d \cdot \cos \theta}{r^{2}}=\frac{1}{4 \pi \varepsilon_{o}} \frac{\stackrel{\rightharpoonup}{P} \cdot \widehat{n}}{r^{2}}
$$

3 ${ }^{\text {rd }}$ Approximation $\quad r \gg \lambda$ (Far field)
So equation (8) becomes

$$
\begin{equation*}
V(\vec{r})=-\frac{P_{o} \omega}{4 \pi \varepsilon_{o} c}\left(\frac{\cos \theta}{r}\right) \sin \left[\omega\left(t-\frac{r}{c}\right)\right] \tag{9}
\end{equation*}
$$

In radiation phenomenon, there are three length scales that are important:

1. Near field (zone)
$\boldsymbol{d} \ll r \ll \lambda$
2. Intermediate field (zone)
3. Radiation field (far field) $\boldsymbol{d} \ll \boldsymbol{r} \approx \lambda$ $\boldsymbol{d} \ll \lambda \ll r$

Vector potential

The vector potential is determined by the current

$$
\begin{gathered}
\vec{I}\left(t_{r}\right)=\frac{d q}{d t} \widehat{k}=-q_{o} \omega \sin \omega t_{r} \widehat{k} \\
\vec{A}(\vec{r}, t)=\frac{\mu_{o}}{4 \pi} \int_{-d / 2}^{d / 2} \frac{-q_{o} \omega \sin \left[\omega\left(t-\frac{r}{c}\right)\right]}{r} d z
\end{gathered}
$$

This is not an easy integral, we assume that $r \gg d$ (The ideal dipole approximation), and r will take the average value of r during the integral, we end up with

$$
\begin{equation*}
\vec{A}(\stackrel{\rightharpoonup}{r}, t) \cong-\frac{\mu_{o} P_{o} \omega}{4 \pi r} \sin \left[\omega\left(t-\frac{r}{c}\right)\right] \widehat{k} \tag{10}
\end{equation*}
$$

From equations (9) and (10), we are in a position to find the fields through the following:

$$
\vec{E}=-\nabla V-\frac{\partial \vec{A}}{\partial t} \quad \text { and } \quad \vec{B}=\nabla \times \vec{A}
$$

From symmetry, we can see that both scalar and vector potentials do not have φ dependence

$$
\nabla V=\frac{\partial V}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial V}{\partial \theta} \widehat{\theta}
$$

$$
\nabla V=-\frac{P_{o} \omega}{4 \pi \varepsilon_{o} c}\left[\cos \theta\left(-\frac{1}{r^{2}} \sin \omega\left(t-\frac{r}{c}\right)-\frac{\omega}{r c} \cos \omega\left(t-\frac{r}{c}\right)\right) \hat{r}\right]
$$

$$
\begin{equation*}
+\frac{P_{o} \omega}{4 \pi \varepsilon_{o} c}\left[\frac{\sin \theta}{r^{2}} \sin \left[\omega\left(t-\frac{r}{c}\right)\right]\right] \widehat{\theta} \tag{11}
\end{equation*}
$$

$\frac{1}{r} \ll \frac{c}{\omega}$

Meanwhile

$$
\begin{gathered}
\nabla \times \vec{A}=\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r A_{\theta}\right)-\frac{\partial A_{r}}{\partial \theta}\right] \widehat{\varphi} \\
=-\frac{\mu_{o} P_{o} \omega}{4 \pi r}\left\{\frac{\omega}{c} \sin \theta \cos \left[\omega\left(t-\frac{r}{c}\right)\right]+\frac{\sin \theta}{r} \sin \left[\omega\left(t-\frac{r}{c}\right)\right]\right\} \widehat{\varphi}(15)
\end{gathered}
$$

Again, for $r \gg \lambda$, we drop the $2^{\text {nd }}$ term

$$
\Rightarrow \vec{B}=-\frac{\mu_{o} P_{o} \omega}{4 \pi r} \frac{\omega}{c} \sin \theta \cdot \cos \left[\omega\left(t-\frac{r}{c}\right)\right] \widehat{\varphi}
$$

Equations (14) and (16) represent the EM waves radiate out from the oscillating electrical dipole. We can see that \vec{E} and \vec{B} are in phase and $\vec{E} \perp \vec{B}$.

For $r \gg \lambda$, (far field approximation) the $1^{\text {st }}$ and the $3^{\text {rd }}$ term drop out, we end up with

$$
\begin{equation*}
\nabla V \cong \frac{P_{o} \omega^{2}}{4 \pi \varepsilon_{o} c^{2}}\left(\frac{\cos \theta}{r}\right) \cos \left[\omega\left(t-\frac{r}{c}\right)\right] \hat{r} \tag{12}
\end{equation*}
$$

Similarly the far field approximation for $\frac{\partial \vec{A}}{\partial t}$ is

$$
\begin{equation*}
\frac{\partial \stackrel{\rightharpoonup}{A}}{\partial t}=-\frac{\mu_{o} P_{o} \omega^{2}}{4 \pi r} \cos \left[\omega\left(t-\frac{r}{c}\right)\right](\cos \theta \hat{r}-\sin \theta \widehat{\theta}) \tag{13}
\end{equation*}
$$

Combining eq. (12) and (13)
\square

$$
\begin{equation*}
\vec{E}=-\frac{\mu_{o} P_{o} \omega^{2}}{4 \pi}\left(\frac{\sin \theta}{r}\right) \cos \left[\omega\left(t-\frac{r}{c}\right)\right] \widehat{\theta} \tag{14}
\end{equation*}
$$

The Poynting vector is

$\vec{S}=\frac{1}{\mu_{o}} \vec{E} \times \vec{B}=\frac{\mu_{o}}{c}\left[\frac{P_{o} \omega^{2}}{4 \pi}\left(\frac{\sin \theta}{r}\right) \cos [\omega(t-r / c)]\right]^{2} \hat{r} \quad$ (17)
The intensity of the radiation is given by the time-average of the Poynting vector.

Total power radiated is given by

$$
\begin{gather*}
\langle P\rangle=\oint\langle\vec{S}\rangle \cdot \overrightarrow{d a}=\left(\frac{\mu_{o} P_{o}^{2} \omega^{4}}{32 \pi^{2} c}\right) \int \frac{\sin ^{2} \theta}{r^{2}} r^{2} \sin \theta d \theta d \varphi \\
\langle P\rangle=\frac{1}{4 \pi \varepsilon_{o}} \frac{P_{o}^{2} \cdot \omega^{4}}{3 c^{2}} \tag{19}
\end{gather*}
$$

The electric dipole radiation has the following characteristics.

1. The radiation is along the \widehat{r}, radially outward.
2. The $1 / r^{2}$ depend agrees with the energy conservation.
3. The $\sin ^{2} \theta$ dependence. More energy radiated at 90°.
4. The energy radiated is $\propto \omega^{4}$. This is an important physics law----Rayleigh scattering. It explains why the sky is blue, and sunset is reddish.

Magnetic Dipole Radiation
A wire loop of radius b carries a current,

$$
I(t)=I_{o} \cos \omega t
$$

The magnetic dipole associated with this current is given by

$$
\stackrel{\rightharpoonup}{m}(t)=\pi b^{2} \cdot I(t) \widehat{k}
$$

The scalar potential is zero. The vector potential is given by the retarded potential

$$
\begin{equation*}
\vec{A}(\vec{r}, t)=\frac{\mu_{o}}{4 \pi} \int \frac{I_{o} \cos [\omega(t-r / c)]}{r} d \overrightarrow{\ell^{\prime}} \tag{21}
\end{equation*}
$$

We choose the observation point P on the $x-z$ plane, and the direction of \vec{A} at \mathbf{P} is in the \mathbf{y}-direction by symmetry argument

$$
\begin{gathered}
\vec{A}(\vec{r}, t)=\frac{\mu_{o} I_{o} b}{4 \pi} \hat{\jmath} \int_{0}^{2 \pi} \frac{\cos [\omega(t-r / c)]}{r} \cos \varphi^{\prime} d \varphi^{\prime} \\
r=\sqrt{r^{2}+b^{2}-2 r b \cdot \cos \psi}
\end{gathered}
$$

ψ is the angle between \vec{r} and \vec{b}

$$
\vec{r}=r \sin \theta \widehat{x}+r \cos \theta \hat{z} \quad \vec{b}=b \cos \varphi^{\prime} \vec{x}+b \sin \varphi^{\prime} \hat{y}
$$

$$
\vec{r} \cdot \vec{b}=r b \cdot \cos \psi=r b \sin \theta \cos \varphi^{\prime}
$$

$$
\begin{equation*}
\square r=\sqrt{r^{2}+b^{2}-2 r b \cdot \sin \theta \cdot \cos \varphi^{\prime}} \tag{22}
\end{equation*}
$$

and $\quad \cos \psi=\sin \theta \cdot \cos \varphi^{\prime}$

$\underline{2^{\text {nd }} \text { Approximation (Long wavelength approximation) }}$

$\lambda \gg b \quad$ The previous equation becomes
$\cos [\omega(t-r / c)] \approx \cos \left[\omega\left(t-\frac{r}{c}\right)\right]-\frac{\omega b}{c} \sin \theta \cos \varphi^{\prime} \sin [\omega(t-r / c)]$
Substitute the above eq. into eq. (21)

$$
\begin{align*}
\vec{A}(\vec{r}, t)= & \frac{\mu_{o} m_{o}}{4 \pi}\left(\frac{\sin \theta}{r}\right)\left\{\frac{1}{r} \cos \left[\omega\left(t-\frac{r}{c}\right)\right]\right. \\
& \left.-\frac{\omega}{c} \sin \left[\omega\left(t-\frac{r}{c}\right)\right]\right\} \widehat{\varphi} \tag{23}
\end{align*}
$$

Eq. (23) should be compared with eq. (8), we can see that the $1^{\text {st }}$ term is the static term while the $2^{\text {nd }}$ term is the radiation term. As $\boldsymbol{\omega} \rightarrow \mathbf{0}$, only the static term left.

We drop the $1^{\text {st }}$ term of eq. (23)

$$
\vec{A}(\vec{r}, t)=-\frac{\mu_{o} m_{o} \omega}{4 \pi c}\left(\frac{\sin \theta}{r}\right) \sin [\omega(t-r / c)] \widehat{\varphi}
$$

From \vec{A} we obtain both \vec{E} and \vec{B} fields as follow:
$\vec{E}=-\frac{\partial \vec{A}}{\partial t}=\frac{\mu_{o} m_{o} \omega^{2}}{4 \pi c}\left(\frac{\sin \theta}{r}\right) \cos \left[\omega\left(t-\frac{r}{c}\right)\right] \widehat{\varphi}$
$\vec{B}=\nabla \times \vec{A}=-\frac{\mu_{o} m_{o} \omega^{2}}{4 \pi c^{2}}\left(\frac{\sin \theta}{r}\right) \cos \left[\omega\left(t-\frac{r}{c}\right)\right] \widehat{\theta}$

The Poynting vector is defend
$\vec{S}=\frac{1}{\mu_{o}}(\vec{E} \times \vec{B})=\frac{\mu_{o}}{c}\left[\frac{m_{o} \omega^{2}}{4 \pi c}\left(\frac{\sin \theta}{r}\right) \cos [\omega(t-r / c)]\right]^{2}$
The time-average power radiated is

$$
\begin{equation*}
\langle\vec{S}\rangle=\left(\frac{\mu_{o} m_{o}^{2} \omega^{4}}{32 \pi^{2} c^{3}}\right) \frac{\sin ^{2} \theta}{r^{2}} \hat{r} \tag{25}
\end{equation*}
$$

Integrating over the solid angle, the total power radiated is

$$
\langle P\rangle=\int\langle\vec{S}\rangle \cdot \overrightarrow{d a}=\frac{\mu_{o} m_{o}^{2} \omega^{4}}{32 \pi^{2} c^{3}} \int \frac{\sin ^{2} \theta}{r^{2}} r^{2} \sin \theta d \theta d \varphi
$$

$$
\begin{equation*}
\langle P\rangle=\frac{\mu_{o} m_{o}^{2} \omega^{4}}{12 \pi c^{3}} \tag{26}
\end{equation*}
$$

Electric dipole radiation vs. Magnetic dipole radiation.

$$
\begin{equation*}
\left\langle P_{e}\right\rangle=\frac{1}{4 \pi \varepsilon_{o}} \frac{P_{o}^{2} \cdot \omega^{4}}{3 c^{2}} \tag{26}
\end{equation*}
$$

$$
\frac{P_{m}}{P_{e}}=\left(\frac{m_{o}}{P_{o} c}\right)^{2}=\left(\frac{\pi b^{2} I_{o}}{q_{o} d c}\right)^{2}
$$

Let

$$
\begin{equation*}
I_{o}=q_{o} \omega \text { and } d=\pi b \tag{28}
\end{equation*}
$$

Radiation from an arbitrary source

Now we want to extend the previous

$$
\left\langle P_{m}\right\rangle=\frac{\mu_{o} m_{o}^{2} \omega^{4}}{12 \pi c^{3}}
$$

$$
\square \frac{P_{m}}{P_{e}}=\left(\frac{\omega b}{c}\right)^{2}=\left(\frac{b}{\lambda}\right)^{2} \ll 1
$$ derivation to an arbitrary charge distribution,

$$
\begin{equation*}
V(\vec{r}, t)=\frac{1}{4 \pi \varepsilon_{o}} \int \frac{\rho\left(\overrightarrow{r^{\prime}}, t-\frac{r}{c}\right)}{r} d \tau^{\prime} \tag{27}
\end{equation*}
$$

Where r is given by

$$
r=\sqrt{r^{2}+r^{\prime 2}-2 \vec{r} \cdot \overrightarrow{r^{\prime}}}
$$

Next we will do the multiple expansion to the retarded potential of an arbitrary source-eq. (27), and apply those approximations along the way.
$\underline{1^{\text {st }} \text { Approximation }}\left(r \gg r^{\prime}\right) \quad$ (Source is localized and finite)

$$
\begin{align*}
& \text { Eq. (28) } \Rightarrow r \cong r\left(1-\frac{\vec{r} \cdot \overrightarrow{r^{\prime}}}{r^{2}}\right) \\
& \Rightarrow \frac{1}{r} \cong \frac{1}{r}\left(1+\frac{\vec{r} \cdot \overrightarrow{r^{\prime}}}{r^{2}}\right) \tag{29}\\
& \rho\left(\overrightarrow{r^{\prime}}, t-\frac{r}{c}\right) \cong \rho\left(\overrightarrow{r^{\prime}}, t-\frac{r}{c}+\frac{\hat{r} \cdot \overrightarrow{r^{\prime}}}{c}\right)
\end{align*}
$$

Define the retarded time at the origin as \boldsymbol{t}_{o}

$$
t_{o} \equiv t-\frac{r}{c}
$$

And expand $\rho(t)$ as a Taylor series about t_{0}
(Taylor expansion)

We can see from eq. (31), the first integral is the total net charge, the second integral is the net electric dipole moment evaluated at t_{o}, and the $3^{\text {rd }}$ term is the time derivative of the dipole moment...

$$
V(\vec{r}, t) \cong \frac{1}{4 \pi \varepsilon_{o}}\left[\frac{Q}{r}+\frac{\hat{r} \cdot \vec{p}\left(t_{o}\right)}{r^{2}}+\frac{\hat{r} \cdot \dot{p}\left(t_{o}\right)}{r c}\right]
$$

$$
- \text { - }
$$

Next, we will try to find the vector potential $\vec{A}(\vec{r}, t)$, we will start out with the retarded vector potential

$$
\begin{equation*}
\vec{A}(\vec{r}, t)=\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\overrightarrow{r^{\prime}}, t-r / c\right)}{r} d \tau^{\prime} \tag{33}
\end{equation*}
$$

Again, this is a difficult integration. We will use similar approximation used in the dipole radiation.

$$
\begin{equation*}
\rho\left(\overrightarrow{r^{\prime}}, t-\frac{r}{c}\right) \cong \rho\left(\overrightarrow{r^{\prime}}, t_{o}\right)+\dot{\rho}\left(\overrightarrow{r^{\prime}}, t_{o}\right)\left(\frac{\hat{r} \cdot \overrightarrow{r^{\prime}}}{c}\right)+. \tag{30}
\end{equation*}
$$

We drop all the higher order terms which amount to the long wavelength approximation $\left(\lambda \gg r^{\prime}\right)$.

$\underline{2^{\text {nd }} \text { approximation }}$

$$
\dot{\rho}\left(\frac{r^{\prime}}{c}\right) \gg \ddot{\rho}\left(\frac{r^{\prime}}{c}\right)^{2} \quad \square \frac{c}{|\ddot{\rho} / \dot{\rho}|} \gg r^{\prime}
$$

Substitute (29) (30) into eq. (27)

$$
V(\vec{r}, t) \cong \frac{1}{4 \pi \varepsilon_{o} r}\left\{\int \rho\left(\overrightarrow{r^{\prime}}, t_{o}\right) d \tau^{\prime}+\frac{\hat{r}}{r} \cdot \int \overrightarrow{r^{\prime}} \rho\left(\overrightarrow{r^{\prime}}, t_{o}\right) d \tau^{\prime}\right.
$$

$$
\begin{equation*}
\left.+\frac{\hat{r}}{c} \cdot \frac{d}{d t} \int \overrightarrow{r^{\prime}} \rho\left(\overrightarrow{r^{\prime}}, t_{o}\right) d \tau^{\prime}\right\}+\cdots \tag{31}
\end{equation*}
$$

Compare with equation (3.96) of Griffiths (Multipole expansion!!!)

The $\underline{1}^{\text {st }}$ approximation we made is that $r \gg r^{\prime}$, so we let $r \cong \boldsymbol{r}$ [note that this is zero order approximation], and eq. (33) becomes

$$
\vec{A}(\vec{r}, t) \cong \frac{\mu_{o}}{4 \pi r} \int \vec{J}\left(\overrightarrow{r^{\prime}}, t_{o}\right) d \tau^{\prime}
$$

According to Problem 5.7 (page 223), the above eq. can be reduced to

$$
\begin{equation*}
\vec{A}(\vec{r}, t) \cong \frac{\mu_{o}}{4 \pi} \frac{\dot{p}\left(t_{o}\right)}{r} \tag{34}
\end{equation*}
$$

We can see from eq.(34) that the $\dot{\boldsymbol{p}}$ is already $1^{\text {st }}$ order in r^{\prime}, so we can use the zero order approximation above.

From eq. (32) and (34), we can find \vec{E} field and \vec{B} field by

$$
\vec{E}=-\nabla V-\frac{\partial \vec{A}}{\partial t}, \quad \vec{B}=\nabla \times \vec{A}
$$

3rd approximation Drop $1 / r^{2}$ terms in \vec{E} and \vec{B}
So we only deal with the $3^{\text {rd }}$ term in eq. (32)

$$
\nabla V \cong \nabla\left[\frac{1}{4 \pi \epsilon_{o}} \cdot \frac{\hat{r} \cdot \dot{p}\left(t_{o}\right)}{r c}\right] \cong \frac{1}{4 \pi \epsilon_{o}}\left[\frac{\hat{r} \cdot \ddot{p}\left(t_{o}\right)}{r c}\right]\left(-\frac{\hat{r}}{c}\right)
$$

Combine with the results we obtained from $\frac{\partial \vec{A}}{\partial t}$ and $\nabla \times \vec{A}$, we obtain

$$
\begin{aligned}
& \vec{E}(\vec{r}, t) \cong \frac{\mu_{o}}{4 \pi r}[\hat{r} \times(\hat{r} \times \ddot{p})] \\
& \vec{B}(\vec{r}, t) \cong-\frac{\mu_{o}}{4 \pi r c}[\hat{r} \times \ddot{p}]
\end{aligned}
$$

Assuming that $\ddot{\boldsymbol{p}}$ is in the $\hat{\mathbf{z}}$ direction, we can write eq. (35) and (36) in the spherical coordinates

$$
\begin{align*}
& \vec{E}(r, \theta, t) \cong \frac{\mu_{o} \ddot{p}\left(t_{o}\right)}{4 \pi}\left(\frac{\sin \theta}{r}\right) \widehat{\theta} \tag{37}\\
& \vec{B}(r, \theta, t) \cong \frac{\mu_{o} \ddot{p}\left(t_{o}\right)}{4 \pi c}\left(\frac{\sin \theta}{r}\right) \widehat{\varphi} \tag{38}
\end{align*}
$$

The Poynting vector follows and has the same geometry as the eq. (18) on page 16.

$$
\begin{align*}
\langle\vec{S}\rangle & \cong \frac{\mu_{o}}{16 \pi^{2} c}\left[\ddot{\boldsymbol{p}}\left(t_{o}\right)\right]^{2}\left(\frac{\sin \theta}{r}\right)^{2} \hat{r} \\
P & \cong \int \vec{S} \cdot \overrightarrow{d a}=\frac{\mu_{o} \ddot{p}^{2}}{6 \pi c} \tag{40}
\end{align*}
$$

Example 11.2

Assume we have a simple oscillating electric dipole

$$
p(t)=p_{o} \cos (\omega t), \quad \ddot{p}(t)=-\omega^{2} p_{o} \cos (\omega t)
$$

Then eq. (40) becomes

$$
P_{r a d}(t) \cong \frac{\mu_{o}}{6 \pi c} \omega^{4} p_{o}^{2} \cos ^{2}(\omega t)
$$

Take time-average, we recover eq. (19) on page 25.
For point charge, we let $\vec{p}(t)=q \vec{d}(t)$, then $\ddot{p}(t)=q \vec{a}(t)$ Then eq. (40) becomes

$$
P=\frac{\mu_{o} q^{2} a^{2}}{6 \pi c}
$$

This is the famous Larmor formula: see page 38.

Summary

1. The dominating term in the multiple expansion of arbitrary source is the electric dipole radiation. This situation is similar to the multiple expansion in the static case.
2. No monopole radiation.
3. The next higher order terms are magnetic dipole radiation and electric quadrupole radiation.
4. The Poynting vector is proportional to the square of $\ddot{p}(t)$, which is proportional to the acceleration.
5. If we let $\ddot{\boldsymbol{p}}(t)=q a(t)$, eq. (37) becomes the famous Larmor formula (11.61) on page 481.

Power radiated by a point charge

From Chap. 10 we already shown that for a point charge with an given trajectory $w(t)$, the fields are given by (10.65) and (10.66).

$$
\begin{gather*}
\vec{E}(\vec{r}, t)=\frac{q}{4 \pi \varepsilon_{o}} \frac{r}{(\stackrel{r}{r} \cdot \vec{u})^{3}}\left[\vec{u}\left(c^{2}-v^{2}\right)+\vec{r} \times(\vec{u} \times \vec{a})\right]_{r e t}(41) \\
\vec{B}(\vec{r}, t)=\frac{1}{c}[\widehat{r} \times \vec{E}]_{r e t} \tag{42}
\end{gather*}
$$

The Poynting vector is

$$
\vec{S}=\frac{1}{\mu_{o}}(\stackrel{\rightharpoonup}{E} \times \vec{B})=\frac{1}{\mu_{o} c}[\stackrel{\rightharpoonup}{E} \times(\widehat{r} \times \vec{E})]
$$

Use vector triple product rule, eq. (1.17)

$$
\begin{equation*}
\longrightarrow \quad \vec{S}=\frac{1}{\mu_{o} c}\left[E^{2} \widehat{r}-(\widehat{\boldsymbol{r}} \cdot \vec{E}) \vec{E}\right] \tag{43}
\end{equation*}
$$

Not all terms in eq. (43) are radiation terms, as we can see from eq. (41)- only the $2^{\text {nd }}$ term contains acceleration, here we will only concentrate on this term

$$
\begin{equation*}
\vec{E}_{\text {rad }}=\frac{q}{4 \pi \varepsilon_{o}} \frac{r}{(\vec{r} \cdot \vec{u})^{3}}[\vec{r} \times(\vec{u} \times \vec{a})] \tag{44}
\end{equation*}
$$

The $2^{\text {nd }}$ term in eq. (43) can also be dropped because radiation can not be in the \vec{E} direction.

$$
\begin{equation*}
\stackrel{\rightharpoonup}{S}_{R a d}=\frac{1}{\mu_{o} c} E_{r a d}^{2} \widehat{r} \tag{45}
\end{equation*}
$$

Assume that $c \gg v$ such that

$$
\vec{u}=c \widehat{r}-\vec{v} \cong c \widehat{r}
$$

$$
\begin{equation*}
\vec{E}_{r a d} \cong \frac{q}{4 \pi \varepsilon_{o} c^{2} r}[\widehat{r} \times(\widehat{r} \times \vec{a})]=\frac{\mu_{o} q}{4 \pi r}[(\widehat{r} \cdot \vec{a}) \widehat{r}-\vec{a}] \tag{47}
\end{equation*}
$$

Substitute (47) into (45), we obtain
$\vec{S}_{r a d} \cong \frac{1}{\mu_{0} c}\left(\frac{\mu_{o} q}{4 \pi r}\right)^{2}\left[a^{2}-(\widehat{r} \cdot \vec{a})^{2}\right] \widehat{r}=\frac{\mu_{o} q^{2} a^{2}}{16 \pi^{2} c}\left(\frac{\sin ^{2} \theta}{r^{2}}\right) \widehat{r} \quad$ (48)
It is not surprising that we obtain a radiation pattern that is quite similar to the electric dipole formula of eq. (18) on page 15.

The donut shape radiation pattern comes from the $\sin ^{2} \theta$ dependence. The angle θ is the angle between $\widehat{\boldsymbol{r}}$ and \vec{a}. Here we do not have the ω^{4} dependence, because it is not a periodic motion any more.

The total power radiated is

$$
\begin{equation*}
P=\oint \vec{S}_{r a d} \cdot d \vec{a}=\frac{\mu_{o} q^{2} a^{2}}{6 \pi c} \tag{49}
\end{equation*}
$$

Again, this is the Larmor formula we obtained in eq. (40), page 32.
The above formula can be extended to arbitrary velocity, the result is given below

$$
\begin{align*}
& \frac{d P}{d \Omega}=\frac{q^{2}}{16 \pi^{2} \varepsilon_{o}} \frac{|\widehat{r} \times(\vec{u} \times \vec{a})|^{2}}{(\widehat{r} \cdot \vec{u})^{5}} \tag{50}\\
& P=\frac{\mu_{o} q^{2} \gamma^{6}}{6 \pi c}\left(a^{2}-\left|\frac{\mid \vec{v} \times \vec{a}}{c}\right|^{2}\right) \tag{51}
\end{align*}
$$

Example 11.3

Suppose a point charge in a linear accelerator that moves in a straight line with \vec{a} and \vec{v} in the same direction. Find the angular distribution of the radiation and the total power emitted.

Since $\overrightarrow{\boldsymbol{a}}$ and \vec{v} are in the same direction, (assume $\mathbf{c} \gg v$)

$$
\vec{u} \times \vec{a}=(c \widehat{r}-\vec{v}) \times \vec{a}=c(\widehat{r} \times \vec{a})
$$

Substitute into eq. (50) in previous page

$$
\begin{equation*}
\frac{d P}{d \Omega}=\frac{q^{2} c^{2}}{16 \pi^{2} \varepsilon_{o}} \frac{|\widehat{r} \times(\widehat{r} \times \vec{a})|^{2}}{(c-\widehat{r} \cdot \vec{v})^{5}} \tag{52}
\end{equation*}
$$

Follow eq. (44) on page 35,

$$
|\widehat{r} \times(\widehat{r} \times \vec{a})|^{2}=a^{2}-(\widehat{r} \cdot \vec{a})^{2}
$$

Let \vec{v} and $\overrightarrow{\boldsymbol{a}}$ both in the z-direction, (linear accelerator)

$$
\begin{gathered}
a^{2}-(\widehat{r} \cdot \vec{a})^{2}=a^{2}\left(1-\cos ^{2} \theta\right)=a^{2} \sin ^{2} \theta \\
(c-\widehat{r} \cdot \vec{v})=c(1-\beta \cos \theta)
\end{gathered}
$$

Substitute into eq. (50)

$$
\begin{equation*}
\frac{d P}{d \Omega}=\frac{\mu_{o} q^{2} a^{2}}{16 \pi^{2} c} \frac{\sin ^{2} \theta}{(1-\beta \cos \theta)^{5}} \tag{53}
\end{equation*}
$$

The total power radiated is given by

$$
\begin{equation*}
P=\int \frac{d P}{d \Omega} d \Omega=\frac{\mu_{o} q^{2} a^{2}}{16 \pi^{2} c} \int \frac{\sin ^{2} \theta}{(1-\beta \cos \theta)^{5}} \sin \theta d \theta d \varphi \tag{54}
\end{equation*}
$$

The φ integral is 2π, let $\cos \theta=x$

$$
\begin{equation*}
P=\frac{\mu_{o} q^{2} a^{2}}{8 \pi c} \int_{-1}^{1} \frac{\left(1-x^{2}\right)}{(1-\beta x)^{5}} d x \tag{55}
\end{equation*}
$$

From Gradshteyn \& Ryzhik Table of Integrals, let $\mathbf{z}=\mathbf{a}+\mathbf{b x}$

$$
\begin{gathered}
\int \frac{1}{z^{5}} d x=-\frac{1}{4 b z^{4}} \\
\int \frac{x^{2}}{z^{5}} d x=-\left[\frac{x^{2}}{2 b}+\frac{a x}{3 b^{2}}+\frac{a^{2}}{12 b^{3}}\right] \frac{1}{z^{4}}
\end{gathered}
$$

Substitute back into equation (52) we obtain

$$
\begin{equation*}
P=\frac{\mu_{o} q^{2} a^{2} \gamma^{6}}{6 \pi c} \tag{56}
\end{equation*}
$$

where

$$
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}
$$

Or we can do integration by part for the integral in eq. (52)

$$
\begin{equation*}
\Rightarrow \int \frac{\left(1-x^{2}\right)}{(1-\beta x)^{5}} d x=\frac{4}{3} \frac{1}{\left(1-\beta^{2}\right)^{3}} \tag{57}
\end{equation*}
$$

And substitute back into (55) to obtain the result of (56).

Problem 11.16

We assume that a point charge is doing a circular motion in the $x-y$ plane about the origin. Find the radiation pattern.

We choose the axes such that

$$
\vec{v}=v \hat{z}, \quad \text { and } \quad \vec{a}=a \widehat{x}
$$

$\widehat{\boldsymbol{r}}=\sin \theta \cdot \cos \varphi \widehat{x}+\sin \theta \cdot \sin \varphi \widehat{y}+\cos \theta \hat{z}$
The radiation pattern is given by eq. (11.72) on page 485.

$$
\begin{equation*}
\frac{d P}{d \Omega}=\frac{q^{2}}{16 \pi^{2} \varepsilon_{o}} \frac{|\widehat{r} \times(\vec{u} \times \vec{a})|^{2}}{(\widehat{r} \cdot \vec{u})^{5}} \tag{58}
\end{equation*}
$$

$$
\begin{aligned}
|\widehat{r} \times(\vec{u} \times \vec{a})|^{2}= & a^{2} \sin ^{2} \theta \cos ^{2} \varphi \cdot\left(c^{2}-2 c v \cos \theta+v^{2}\right) \\
& \quad-2(a \sin \theta \cos \varphi) c(1-\beta \cos \theta)(\operatorname{cosin} \theta \cos \varphi) \\
& +c^{2}(1-\beta \cos \theta)^{2} \cdot a^{2} \\
= & a^{2} c^{2}\left[(1-\beta \cos \theta)^{2}-\left(1-\beta^{2}\right)(\sin \theta \cos \varphi)^{2}\right]
\end{aligned}
$$

Substitute (59) and (64) back to (58), we end up with

$$
\frac{d P}{d \Omega}=\frac{\mu_{o} q^{2} a^{2}}{16 \pi^{2} c} \frac{\left|(1-\beta \cos \theta)^{2}-\left(1-\beta^{2}\right) \sin ^{2} \theta \cos ^{2} \varphi\right|}{(1-\beta \cos \theta)^{5}}
$$

Radiation Reaction and the Abraham-Lorentz formula

As a charged particle oscillates and radiates energy away, the
particle's kinetic energy decreases. We can say the radiation exerts a force back on the particle, just like action-reaction force pair. This is called radiation reaction, we can also think of it as a damping force, which reduces the energy of the particle.

From eq. (49) on page 37, the Larmor formula gives us the power radiated by an oscillating dipole moment,

$$
p=\frac{\mu_{o} q^{2} a^{2}}{6 \pi c}
$$

This is coming from the damping term

$$
\vec{F}_{r a d} \cdot \vec{v}=-\frac{\mu_{0} q^{2} a^{2}}{6 \pi c}
$$

Assume the time average of the previous equation is approximately correct,

$$
\int_{t_{1}}^{t_{2}} \vec{F}_{r a d} \cdot \vec{v} d t=-\frac{\mu_{o} q^{2}}{6 \pi c} \int_{t_{1}}^{t_{2}} a^{2} d t
$$

Integration by part

$$
\int_{t_{1}}^{t_{2}} a^{2} d t=\int_{t_{1}}^{t_{2}}\left(\frac{d \vec{v}}{d t}\right) \cdot\left(\frac{d \vec{v}}{d t}\right) d t=\left(\vec{v} \cdot \frac{d \vec{v}}{d t}\right)-\int_{t_{1}}^{t_{2}} \frac{d^{2} \vec{v}}{d t^{2}} \cdot \vec{v} d t
$$

The first term on the right side cancels out, so eq. (65) becomes

$$
\int_{t_{1}}^{t_{2}}\left(\vec{F}_{r a d}-\frac{\mu_{o} q^{2}}{6 \pi c} \dot{a}\right) \cdot \vec{v} d t=0
$$

This is not the whole story

[^0]: Law of cosines

