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CHAPTER 10
POTENTIALS AND FIELDS

Outlines

1. The potential formulation
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2. Continuous Distribution
2.1 Retarded potentials
2.2 Jefimenko’s equations
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3. Point Charges
3.1 Lienard-Wiechert Potentials
3.2 The field of a moving point charge

The potential Formulism

In electrostatics, it is more convenient to use potential V,
rather that the electric field E

where Fe_vr
And the E field satisfy
vE=L & wvxE=o0
€o

In magnetostatics, we have
V-B=0 & VxB=up,J

From the fact that V- B = 0, we can define a vector
potential A, but we don’t use A that much, because A4 is
a vector.
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And we can see in Chapter 9, we deal with fields exclusively.
There, we started with Maxwell equations and then end up

with Wave equations for E field and for B field.
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Now we want to ask a general question regarding the
presentation of materials in electrodynamics, “Is there any
advantages to use potentials instead of the fields?”

The answer is YES.

Here we will try to use potentials to describe the Maxwell
equations. We start with Faraday’s law of induction:

=0 I:> B=VxA4

The Faraday’s law can be written as:
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Since

|

AV

~ 94
VXE:_E ) VX(E+E)=0

So we can define a potential such that,

i+az— w @
Frie 1)

Take divergence of Eq. (1) and let V - E= P /e, We
end up with

a . p
—Vv2y ——(Vv- ==
vzy at(v 4) ., )
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The Ampere’s law on the other hand can be re-written in
terms of the scalar and vector potentials as follow:

VX§:ﬂoj+”n
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- . F) 94
=) Vx(VxA4) =u,,]—u,,e,,§(vv+a>

_ 974 — av R
[:> <V2A_uasa F) _V(V’A t HoEo E) =—uJ )
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Equations (2) and (3) contain all the information of the
four Maxwell equations. However, they look quite messy
and may not be easy to solve. No advantages.

However in special conditions, (2)and (3) can be simplified.
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Example 10.1
Given potentials

uok 5
Vo0 & A= g ct—lxD2 lxl<ct
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0 |x| > ct

)

Find the source distributions, p(r, t),j(r, t), & K(r, t)

The fields associated with the potentials are
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_ 94 p.k ~
E = —VV—E— - (ct—|xDz ()

ok _
2c ct—1xhy (5

B=VxA=F

E; [ B,y

"['I'V i ot N =l ] ol

We can show that egs. (4) and (5) satisfy the Maxwell
equations.
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— Mok _ daB
VXE= =——
A AT
B _toky E _ 1 poke,
VXxB= 2 20 Bo€og; =~z 5 2

And
pr,)=0 & J@rt)=0

As we can see from page 8, the magnetic field Bhasa
discontinuity at x=0, this leads to a surface current at x=0.

Lp Lpl_Kxa
mt 2
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Gauge Transformation (Choice of Gauge)
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Since E and B field are physical observables, they are
uniquely defined, once the source terms and boundary
conditions are fixed. For a set of field, there exist many
sets of potentials that will yield the same field. We will
find ways to choose a convenient potentials.

For example, in electrostatics the fields are defined through
the scalar potential V and vector potential A

E=-VW & B=VxA4 (6)
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If we add a constant to V or add a gradient to 4
V=V+C & A=A4+Vi (7)

The fields remain the same.

E=-wW & B=VxA4
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This is a remarkable result, different potentials will yield
the same results for the fields. (Potential is not unique).
We will try to use this concept to simplify the two
equations (2) & (3) we obtained on page 5 and 6.

Now we will show that, in electrodynamics we have

= A - _
E=-W-—= & B=Vx4 (8
We want to choose a new set of ¥’ and 4’ in such way that
the fields still remain the same. We start out with the vector
potential because the way we define the magnetic field does
not change when we go from electrostatics to
electrodynamics. ( See equation (6))
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We want to choose a new set of potentials, V' and 4’ such
that the fields E and B still remain the same.
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Let ——
A=4+V2 (9)
aa

vi=v-—- (10)

Substitute (9) and (10) into equation (8)

= . A a\ a4 -
E'=-w —— =—V<V——at>—E(A+V/1)
B 04
R T

Equations (9) and (10) describe a transformation of one set
of potentials (V, Z) to another set of potentials (V', A’).
This is called gauge transformation.
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Next, we will try to use gauge transformation to simplify
equations (2) and (3).
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Coulomb Gauge

In Coulomb gauge, we choose

V-A4=0 (11) Coulomb Gauge
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P
V&V =—-— (12
£

o

Eq. (2) becomes

)

_ 24 - |4
Eq. (3) ==) (VZA ~ Ho&o %) = —Hol + 108,V (%) 13)
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We can see that in the Coulomb Gauge, the scalar potential
V is very easy to solve, while the vector potential A still
remains to be a difficult problem to solve.

We notice that in the Coulomb gauge, the scalar
potential is still the same as in the static case:
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VG t) = — f p(r"t)dr' 14)

4me, 7

This potential has a peculiar property, namely, the charge
distribution determine the potential instantaneously. This
is unusual in light of special relativity. Fortunately, the
electric field contains the vector potential (see eq. (1))
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The Lorentz Gauge

In the Lorentz gauge, we choose:
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— av
V'A+uﬂ£ﬂE=0 (13)
Apply the above equation into (2) and (3), we obtain
- a*a R v p
2 — —
VI — poo 57 = —HoJ VZV_”"E"W__Z

Define a new operator, [1>, d’Alembertian
2

a
DZE Vz - uasaﬁ
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2A=-p,] (18, [E2V= —sﬁ (15)
[

In the 4-vector notation we define
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|4
At = (Axt Ay'AZ’ ?) ]M = (]x:]y']p CP)

[12 48 = —pJ* (16)
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Skip 10.1.4 Lorentz force law in potential form

Retarded Potentials
From now on we will use Lorentz Gauge only, namely
_ 19V

V- A=———
cZ at
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So eg. (2) and (3) become

102V pG D
VW—-—S—=-—""2- (17 z
c% at? £, an g

. 10% o £
ViA-GoZ = —uJ(T, t) (18) £

These equations are called inhomogeneous wave
equations. They are not easy to solve. We will use a
“handwaving” argument to guess a solution, and then
show that the “guessed” solution is a reasonable
solution.

In the electrostatic case, egs. (17) (18) reduce to Poisson
equations

o®)

o

vV =— & VZA=-—p,]
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The solutions to the above Poisson equations are already
known: z

_ 1 rp@) P
V(?)_FSJTM 19
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i) = i‘—;’r f ](%)dr’ (20)




3/30/2016

Now, let’s start our “handwaving” argument.

First examine the following event of a charge moving
along a trajectory and try to find the potential at

position P. B )
A [ !
X
V(A) at P V(B) at P V(C) at P

Isitpossiblethat  V(7,t) = LJ- Mdr'

4me, 7
NO! In general, this is not true! Since EM waves
travel at a finite velocity. So the information of the
charge will take time to reach to point P, at a time

-
delay of <

9102/17/¢

)
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Define a “retarded time”
7

tr=t——

And assume the time-dependent potentials as giving by

VL) = — f wdt’ (21)

4me,

AF D) = EIMW (22)

1

These two potentials are called retarded potentials

9102/15/¢
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Next we want to prove that equations (21) and (22)
indeed are solutions to the inhomogeneous wave
equations (17) and (18).

Green function method

A point charge g at r, the Poisson Equation is given by
V2V = q8(r)

And the potential at 7, due to charge g at ris given by

q

Vs() = —
T—Tl

4me,

If we have a charge distribution p(17), the potential at 7

1 p)
4me, |7_7|

V@) = dr  (23)

Jhisissuperposition Wil
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Now if we want to solve an arbitrary inhomogeneous
differential equation, such as the following

-
z “@e - I (29
We first solve
2p 196 S _ e
VG—C—zw=—4m$(r—r,t—t) (25)

The solution to eq. (25) is called the Green function, and
the solution to eq. (24) is given by

A, t) = % f [~rJ ()6 (F 1, t,t")dT'dt’ (26)

910/15/8
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Now we want to show that solving eq. (17) and (18) leads to
the solutions (21) and (22). We will use Green function
method.

1 3%

Solve VZG_C_ZWZ —41T5(F—T’,t—t’)
The solution is given by
r
_ o(t'+—--1)
G(F, r,t, t’) = + (27)
=71

Substitute eq. (27) into eq. (26)

. 1 r8(e+Z—¢) _
ATt = Efi( rc )ua](r’, t)d'dt’

9108/17/¢
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Here we’ll solve a special case, assume that J(r, ) = j(r) -

e—twt

AF D) = ZT‘;J’](:)dr’ . f e‘“""é‘(t’ +€— t) dt’

(Let t, = t—f)

o (JO) (et
—Ef pm dt' -e ( )

- &f JO7) ity gt
4 E

aGn =12 f I(T'T't')ar'

—)

If the above holds, then any arbitrary function of time also will be true, because we can use Fourier series.

910/15/8
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Next, we want to show that the retarded potentials [Eqs.
(21), (22)] satisfy the inhomogeneous wave equations (17)
and (18). We start with equation (21) and take gradient:

v i [ [ o (1)

_9p Bt,,\ at,  ot,
=t |ox +@¢”+£Z

9102/17/¢

)

=p\7t,=—;p[w-] (tr=t-71

) N 1 7 Z

Substitute V# =% and V(— =—— g
1 K2t

e

Take divergence of equation (28), 1

1 1/ (A 7
“ ;) [‘E<P(Y*';>>‘;'<‘7P)

4md(r) - 2hr)
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~lp (v ' %) + o @pldr =)
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Re-arrange the above expression, we end up with
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10%v »p

2y =__—___
v c2at? g,

(29)

Example 10.2
An infinite straight wire carries the current
_0 fort<0 g
I = I,, fort>0 (30) g

Assume the wire is electrically neutral, so p = 0.

Z(r,t)=f—1‘;2f_ ](rT’t’)d 31)
I 6) = 1)8(08()  (32)

(32) Substitute into (31)

_[_ml( ") a7 33)
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A(r,t) =

Eq. (30) describes the abruptness of the turn-on of the
current from the point of view of the source. At point P,
the appearance of the current is given by

910/15/8

]

I(t r)_ 0, t<7"/c z
c/) I, t>"/c r

So only for # < ct, | is not zero, otherwise 1 =0. Eq. (33)
becomes
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N>

- 2ppd, (VO g
A(r‘ t) — I‘lﬂ Of

——dz
4T Jri+ 22
_ Bl o [ct +4/(ct)? — rz]

211' (34)

To find the fields generated by these potentials

= — 94 pol,c . 35) 8
= — —_—— =7 5

ot 2my/ (ct)? — r? :
— = Moly ct

= —9 (36)
2mr [(ct)? — 2
For t - 0, eq.(35) (36) approach the statics case.

— — I
E=0, B = Mo 0 ~
2mr
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Do they satisfy the Maxwell equations? YES

Do they satisfy the wave equations? YES

Jefimenko’s equations

When we derive the retarded potentials, Eq. (21), (22),
we just used some hand-waving arguments and
fortunately it works.

910/15/8

In general, we can not expect such simple argument
would work. For example, we can not write down the
field using the retarded time argument, namely

- t
E(r,t)i v fp(;z )A

SpIoL] puB s[ERUStod 01 w03dey)

J@t) x 7

dt’
P

B(‘t);t
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The exact form of the E and B field can be obtained
through

=)
-~
910%/1
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degy

4-1t£

AGRICHE <vp(rt)>]

“p(r ) p(r,tr)?] @
cr

SpJoLg pue s[ERUAjoq O 12

411'80

02 _ ke j’(?, tr) ’
—E——EIT(lT (38)
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= f[p(r ) p(z':r)A l(r:r) av @)

As you can see , this is a complicated equation with no
utility at all. So it is not very useful. Similarly B can be
found (see page 450 of Griffiths).
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NGAS) l J @', t)

A | x Rar (40)

B(‘t)_—f

Lienard-Wiechert Potentials (Point Charge)

The Lienard-Wiechert potential is the retarded potential
due to one moving point charge. In particular when v ~c.
It has its origin in the special theory of Relativity.

9108/15/¢

Here we will use hand-waving argument to derive it.
We started with the retarded potentials and we assume
Lorentz gauge.

VE L) = — f”(’ B gy (21)
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4me,

FIGOE-C f ]—(r;;t') dtv  (22)

For one single point charge moving in a trajectory

Krtaded

W(tr) - position of q at time ¢,

910/15/8

7l =1r - w(t)| = ct-t,)

F=7-W(t,) (10.45)

L

It is important to note that at any time, there is only one point
on the trajectory contribute to the potential at point P

Naively, we may think that since

_ 1 [p@, tr) 1q
Vir,t) =——
) 41180_[ 7 dv' 4m~:u
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However, the above is not correct!!!

What happen is the following:

V(@ t) p(r.t)dr (41)

9108/17/¢

1 1 f
T ame, ¥ —w(t,)|

The denominator |#| can come out of the integral
without any problem, but the integral of charge is not so
easy. Specifically:

[ P (F, tr)dtl * Qtotal

PN pue s[Enutod 0T w0idey)

Because, t, will be different for each different points.
So we need to evaluate p at different times for
different 7’ and this leads to a distortion of the total
charge calculated.

For a point charge, we have

[ p(rt)de = ﬁ (42)
c
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One way to verify equation (42) is shown on page 452 of
Griffiths. The time it takes the train to travel a distance
L' — L is the same as the time for light to travel a distance

of L'. T L
L _g= L=——
c v = 1-Y/,

-a
it
Aoy emge hmmpud ™ — \i\

splotg pue s[Enuelg 01 03de)
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Notice that this effect does not distort the dimension
perpendicular to the velocity, such that the apparent
volume 7’ is related to the actual volume t by

T
= 43
tT1 5. v/c (43)
It follows that the equations (21) (22) become
-1
dne, (1 — 7 - v/c)
Ho qv

= . v
A(r,t) = Em = C_ZV(T' t) (45)

V@, o) = (44)

These are the Lienard-Wiechert Potentials for a
moving point charge.

9102/17/¢
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Alternate approach to derive eqgs. 44, 45

The formal way to solve equation (41) is to transform it
into a new coordinate system, where time is the same
such that the integration can take place.

[o(F.e)ar = [pEeodn @7

9102/15/¢
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f'@ f'@

f(x):f(a)+T(x—a)+T(x—a)z+¥

We expand 74 in terms of 7, using Taylor expansion
=1 = () (6~ ty) + (/) (& — ) +..

_0(x1,51,21)

(x—a)®+-
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.
t,=t——
[4
x4 at, x4 at,
=1-7 A _o0—v 4.
ax' Vage t ay’ Vx ay’ +
For
And t,=t— | 5
c
Then at, 1y at, ry at, 1,

ax ¢’ ay ¢’ 9z ¢

P stk and it is the unit vector in the
T ATTH 55 direction.
9(x1,y1,21) _ V-7 _dry
a(x',y',z) c T dr

drq

I:> dr’ =1—"A~—"7/c
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dt; = A, y.2) dt' (46) ;
where '
6x1 0x1 6x1 ;_
o dy o7
9(x1,¥1,21) _ (91 9y: 9y: ’
ax',y',z') ax' ay' oz
0z, 0z, 0zq
ax' ay' oz
Example 10.3

Find the potentials of a point charge moving with a
constant velocity.

Since it is a constant velocity motion, the trajectory is a
straight line. Let’s choose the line such that it pass
through the origin at t=0.

w(t) =t
r=|r-vt,|=c(t—t,) (10.44)
Square above eg. and then solve for t,. (See page 49).

Since t,. is the retarded time, we choose

r
tr=t—z

9108/17/¢
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We first compute the retarded time, using (10.44)

2 — 27 - Bt + v2e2 = c2(t? — 2tt, + t2) (10.48)

:C .- (c2t—7-9) £ /(2 —F D)2 + (2 — v)) (1% — c*t?)

c2 —p2
Next
7V v (r—7t,)
1-2 ) =ct-t)|1-—— ——— =
r( c ) o ’)[ c c(t—t,)

S,

v'r v
=clt—t)——+—t
=) =t

= l@t-5-5)- (@ -v1)e]
=L@ —r )+ (@G- ) @)

Substitute the above into (10.46) and (10.47), we end up with:

910/15/8
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1 qc
V@,e) =
41, \[(2t —7 - )2 + (2 — vD) (12 — 2t?)
Ao - w?

A [(Zt—7 D)2 + (& — v) (2 — 2t?)

Now if we let v = viand ¥ = zk

qc
V(z,t) = ——
4me, \/C4t2 + (2 —v2)(22 — c212)
_ 1 9
" 4me, 2,2
o 24 (vztz — %)
Att=0 ¢
1 r
V(z,0) = L - -

1
4me, " 4ms, z
°z[1- vz/cz ¢

The fields due to Lienard-Wiechert potentials

Once the Lienard-Wiechert potentials are known, the
fields can be obtained through

N 94 ~ _
E=-W-— & B=VxA4
at

Conceptually, it is straight forward and simple. But in
reality, it is an exercise in vector calculus. See page 456-457
of Griffiths for details. In the end we have

BG0 = g o s [ ) + 7 x @x),,, (47)

Be.0-LrxE), oo aa EEEE

9102/15/¢
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There are two terms in eq. (47)
Letu =c7#—-v
1t term
q r
4me, (7 - u)3
This eq. does not depend on acceleration. It is called
generalized Coulomb field, because if v=0, this part
goes back to the static field.

[u- (e =v")],,,

2nd term

The 2n term depends on acceleration. This is called
radiation field.

— 1
Eoogii ¢ —
radiation r

The static field satisfies the Gauss Law. No energy
radiated out.

For the radiation field, it does not satisfy the Gauss law.
But it does agree with conservation of energy.

f(energy flux) -da = constant

1
[Erqql? x [energy flux] «< s

910/15/8
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Example 10.4

Calculate the E and B field of a point charge moving with
a constant velocity along the x-axis. y

W(t,) = vt, = vt,®

_ v
v(it-t)= P

F=T-Wt) ; r=ct-t)

Equation (10.72) becomes — —
wit) wo

— q ¥ — 2 2
E=——F—res - 41
Amte, (7 - U 3u(c v) (1)

- oo
r——r=—[cF -] =
c c

— T )
cr—v, ?u=R

u

The direction of the non-radiative E field is in the direction of R, namely
from the present position of the charge. This is an extraordinary
coincidence, since the “message” came from the retarded position.

2
_ . C— N v i
F@=7 —R=c(#-K) =c |[R2 = T r2sin0/

But rsin@’ = Rsin6

o v?
7-U=Rc |1-—sin?0
c

910/15/8
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New notes added

From eq. (2) of slide 42, we can see that

(et —7-3) ~ (2~ vt

= (@t =7 -9 + (& —v)) (7 - *t?)

Re-arrange the above equation, and solve the quadratic
equation of t,., we end up with

(2t —7-9) £ /(2 -7 )2 + (2 — v)) (12 - 212)
L= 22

To fix the sign, consider the limit, v=0

2t +./(c2)? + c2(1? — c%t?) T
t. = > =t+-
c c

9102/17/¢
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