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CHAPTER 10
POTENTIALS AND FIELDS
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Outlines

1. The potential formulation

2. Continuous Distribution
2.1 Retarded potentials
2.2 Jefimenko’s equations

3. Point Charges
3.1 Lienard-Wiechert Potentials
3.2 The field of a moving point charge
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The potential Formulism

In electrostatics, it is more convenient to use potential V, 
rather that the electric field ࡱ

ࡱ ൌ െસࢂ
where

And the ࡱ field satisfy

ࢺ · ࡱ ൌ
࣋
࢕ࢿ
ࢺ									&									 ൈ ࡱ ൌ ૙

In magnetostatics, we have

સ · ࡮ ൌ ૙						&					સ ൈ ࡮ ൌ റࡶ࢕ࣆ

From the fact that ࢺ · ࡮ ൌ ૙, we can define a vector 
potential ࡭, but we don’t use ۯ that much, because ࡭ is 
a vector. 
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And we can see in Chapter 9, we deal with fields exclusively.  
There, we started with Maxwell equations and then end up 
with Wave equations for ࡱ field and for ࡮ field.

Now we want to ask a general question regarding the 
presentation of materials in electrodynamics, “Is there any 
advantages to use potentials instead of the fields?”

The answer is YES.

Here we will try to use potentials to describe the Maxwell 
equations.  We start with Faraday’s law of induction:

સ · ࡮ ൌ ૙ ࡮ ൌ સ ൈ Since࡭

The Faraday’s law can be written as:
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ࢺ ൈ ࡱ ൌ െ
࡮ࣔ
࢚ࣔ

સ ൈ ࡱ ൅
࡭ࣔ
࢚ࣔ

ൌ ૙

So we can define a potential such that,

ࡱ ൅
࡭ࣔ
࢚ࣔ

ൌ െસࢂ				ሺ૚ሻ

Take divergence of Eq. (1) and let સ · ࡱ ൌ ࣋
⁄࢕ࢿ , we 

end up with

െસ૛ࢂ െ
ࣔ
࢚ࣔ

સ · ࡭ ൌ
࣋
࢕ࢿ
						ሺ૛ሻ
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The Ampere’s law on the other hand can be re-written in 
terms of the scalar and vector potentials as follow:

સ ൈ ࡮ ൌ റࡶ࢕ࣆ ൅ ࢕ࢿ࢕ࣆ
ࡱࣔ
࢚ࣔ

સ ൈ સ ൈ ࡭ ൌ റࡶ࢕ࣆ െ ࢕ࢿ࢕ࣆ
ࣔ
࢚ࣔ

સࢂ ൅
࡭ࣔ
࢚ࣔ

સ૛࡭ െ ࢕ࢿ࢕ࣆ
ࣔ૛࡭
૛࢚ࣔ

െ સ સ · ࡭ ൅ ࢕ࢿ࢕ࣆ
ࢂࣔ
࢚ࣔ

ൌ െࡶ࢕ࣆറ					ሺ૜ሻ

Equations (2) and (3) contain all the information of the 
four Maxwell equations.  However, they look quite messy 
and may not be easy to solve.  No advantages.

However in special conditions, (2)and (3) can be simplified.
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Example 10.1

Given potentials

ࢂ ൌ ૙				&					࡭ ൌ
࢑࢕ࣆ
૝ࢉ

࢚ࢉ െ ࢞ ૛ࢠො					 ࢞ ൏ ࢚ࢉ

૙																																		 ࢞ ൐ ࢚ࢉ

Find the source distributions, ࣋ ,࢘ ࢚ , ଚറ ,࢘ ࢚ , ,࢘ሺࡷ	& ሻ࢚

The fields associated with the potentials are

ࡱ ൌ െસࢂ െ
࡭ࣔ
࢚ࣔ

ൌ െ
࢑࢕ࣆ
૛

࢚ࢉ െ ࢞ ሺ૝ሻ							ොࢠ

࡮ ൌ સ ൈ ࡭ ൌ ∓
࢑࢕ࣆ
૛ࢉ

࢚ࢉ െ ࢞ ሺ૞ሻ										࢟

3/21/2016
C

h
apter 10 P

oten
tials an

d F
ields

8

We can show that eqs. (4) and (5) satisfy the Maxwell 
equations.

સ · ࡱ ൌ ૙					&					સ · ࡮ ൌ ૙

સ ൈ ࡱ ൌ ∓
࢑࢕ࣆ
૛

ෝ࢟ ൌ െ
࡮ࣔ
࢚ࣔ

સ ൈ ࡮ ൌ െ࢑࢕ࣆ

૛ࢉ
࢕ࢿ࢕ࣆ   ,ොࢠ

ࡱࣔ

࢚ࣔ
ൌ െ ૚

૛ࢉ
ࢉ࢑࢕ࣆ

૛
ොࢠ

And 

࣋ ,࢘ ࢚ ൌ ૙ റࡶ							&			 ,࢘ ࢚ ൌ ૙
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As we can see from page 8, the magnetic field ࡮ has a 
discontinuity at x=0, this leads to a surface current at x=0.

૚
૚ࣆ

૚࡮
∥ െ

૚
૛ࣆ

૛࡮
∥ ൌ ࡷ ൈ ෝ࢔

૚
࢕ࣆ

࢚࢑࢕ࣆ ෝ࢟ ൌ ࡷ ൈ ෝ࢞

ࡷ ൌ ොࢠ࢚࢑

Gauge Transformation (Choice of Gauge)  

Since ࡱ and ࡮ field are physical observables, they are 
uniquely defined, once the source terms and boundary 
conditions are fixed.  For a set of field, there exist many 
sets of potentials that will yield the same field. We will 
find ways to choose a convenient potentials.
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For example, in electrostatics the fields are defined through 
the scalar potential V and vector potential ࡭

ࡱ ൌ െસࢂ							&								࡮ ൌ સ ൈ ሺ૟ሻ					࡭

If we add a constant to V or add a gradient to ࡭

ᇱࢂ ൌ ࢂ ൅ ᇱ࡭							&							࡯ ൌ ࡭ ൅ સࣅ					ሺૠሻ

The fields remain the same.

ࡱ ൌ െસࢂᇱ										&												࡮ ൌ સ ൈ ′࡭

This is a remarkable result, different potentials will yield 
the same results for the fields.  (Potential is not unique). 
We will try to use this concept to simplify the two 
equations (2) & (3) we obtained on page 5 and 6.
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Now we will show that, in electrodynamics we have

ࡱ ൌ െસࢂ െ
࡭ࣔ
࢚ࣔ
࡮					&					 ൌ સ ൈ ሺૡሻ							࡭

We want to choose a new set of ࢂᇱ and ࡭ᇱ in such way that 
the fields still remain the same.  We start out with the vector 
potential because the way we define the magnetic field does 
not change when we go from electrostatics to 
electrodynamics. ( See equation (6))

We want to choose a new set of potentials, ࢂ′ and ࡭′ such 
that the fields ࡱ and ࡮ still remain the same.

Let
′࡭ ൌ ࡭ ൅ સࣅ						ሺૢሻ

ᇱࢂ ൌ ࢂ െ
ࣅࣔ
࢚ࣔ
			ሺ૚૙ሻ
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Substitute (9) and (10) into equation (8)

′ࡱ ൌ െસࢂᇱ െ
ᇱ࡭ࣔ

࢚ࣔ
ൌ െસ ࢂ െ

ࣅࣔ
࢚ࣔ

െ
ࣔ
࢚ࣔ

࡭ ൅ સࣅ

ൌ െસࢂ െ
࡭ࣔ
࢚ࣔ

ൌ ࡱ

Equations (9) and (10) describe a transformation of one set 

of potentials ࡭,ࢂ to another set of potentials ࢂᇱ, ′࡭ .  

This is called gauge transformation.

Next, we will try to use gauge transformation to simplify 
equations (2) and (3).
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Coulomb Gauge 

In Coulomb gauge, we choose

સ · ࡭ ൌ ૙								 ૚૚ ܍܏ܝ܉۵	܊ܕܗܔܝܗ۱								

Eq. (2) becomes
સ૛ࢂ ൌ െ

࣋
࢕ࢿ
					ሺ૚૛ሻ

Eq. (3) સ૛࡭ െ ࢕ࢿ࢕ࣆ
ࣔ૛࡭
૛࢚ࣔ

ൌ െࡶ࢕ࣆറ ൅ સ࢕ࢿ࢕ࣆ
ࢂࣔ
࢚ࣔ

				ሺ૚૜ሻ

We can see that in the Coulomb Gauge, the scalar potential 
ࢂ is very easy to solve, while the vector potential ࡭ still 
remains to be a difficult problem to solve.
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We notice that in the Coulomb gauge, the scalar 
potential is still the same as in the static case:

ࢂ ,࢘ ࢚ ൌ
૚

૝࢕ࢿ࣊
න
࣋ ,′࢘ ࢚

श
ሺ૚૝ሻ						′࣎ࢊ

This potential has a peculiar property, namely, the charge 
distribution determine the potential instantaneously.  This 
is unusual in light of special relativity.  Fortunately, the 
electric field contains the vector potential (see eq. (1))
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The Lorentz Gauge

In the Lorentz gauge, we choose:

સ · ࡭ ൅ ࢕ࢿ࢕ࣆ
ࢂࣔ
࢚ࣔ

ൌ ૙									ሺ૚૜ሻ

Apply the above equation into (2) and (3), we obtain

સ૛࡭ െ ࢕ࢿ࢕ࣆ
ࣔ૛࡭
૛࢚ࣔ

ൌ െࡶ࢕ࣆറ સ૛ࢂ െ ࢕ࢿ࢕ࣆ
ࣔ૛ࢂ
૛࢚ࣔ

ൌ െ
࣋
࢕ࢿ

Define a new operator, ⊡૛ ,   d’Alembertian

⊡૛≡ સ૛ െ ࢕ࢿ࢕ࣆ
ࣔ૛

૛࢚ࣔ

⊡૛ ࡭ ൌ െࡶ࢕ࣆറ				 ૚૝ , 		 ⊡૛ ࢂ ൌ െ
࣋
࢕ࢿ
			ሺ૚૞ሻ
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In the 4-vector notation we define

ࣆ࡭ ൌ ,࢞࡭ ,࢟࡭ ,ࢠ࡭
ࢂ
ࢉ

ࣆࡶ ൌ ,࢞ࡶ ,࢟ࡶ ,ࢠࡶ ࣋ࢉ

⊡૛ ࣆ࡭ ൌ െࣆࡶ࢕ࣆ				ሺ૚૟ሻ

Skip 10.1.4 Lorentz force law in potential form
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From now on we will use Lorentz Gauge only, namely

સ · ࡭ ൌ െ
૚
૛ࢉ
ࢂࣔ
࢚ࣔ

સ૛ࢂ െ
૚
૛ࢉ
ࣔ૛ࢂ
૛࢚ࣔ

ൌ െ
࣋ ,࢘ ࢚
࢕ࢿ

					ሺ૚ૠሻ

સ૛࡭ െ
૚
૛ࢉ
ࣔ૛࡭
૛࢚ࣔ

ൌ െࡶ࢕ࣆറ ,࢘ ࢚ 				ሺ૚ૡሻ

These equations are called inhomogeneous wave 
equations.  They are not easy to solve.  We will use a 
“handwaving” argument to guess a solution, and then 
show that the “guessed” solution is a reasonable 
solution.

So eq. (2) and (3) become

Retarded Potentials
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In the electrostatic case, eqs. (17) (18) reduce to Poisson 
equations

સ૛ࢂ ൌ െ
࣋ ࢘
࢕ࢿ

													&						સ૛࡭ ൌ െࡶ࢕ࣆറ

The solutions to the above Poisson equations are already 
known:

ࢂ ࢘ ൌ
૚

૝࢕ࢿ࣊
න
ᇱሻ࢘ሺ࣋
श

ሺ૚ૢሻ			′࣎ࢊ

࡭ ࢘ ൌ
࢕ࣆ
૝࣊

න
ᇱሻ࢘റሺࡶ
श

ሺ૛૙ሻ									ᇱ࣎ࢊ

P

x

y

z

ᇱሻݎሺߩ

r’
r

ं



3/30/2016

4

3/21/2016
C

h
apter 10 P

oten
tials an

d F
ields

19

Now, let’s start our “handwaving” argument.

First examine the following event of a charge moving 
along a trajectory and try to find the potential at 
position P.

A

B
C

V(A) at P V(B) at P V(C) at P

ࢂ ,࢘ ࢚ ൌ
૚

૝࢕ࢿ࣊
න
࣋ ,′࢘ ࢚

श
 Is it possible that′࣎ࢊ

NO! In general, this is not true! Since EM waves 
travel at a finite velocity.  So the information of the 
charge will take time to reach to point P, at a time 
delay of 

श

ࢉ

ं
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Define a “retarded time”

࢚࢘ ≡ ࢚ െ
श
ࢉ

And assume the time-dependent potentials as giving by

ࢂ ,࢘ ࢚ ൌ
૚

૝࢕ࢿ࣊
න
࣋ ,′࢘ ࢚࢘

श
ሺ૛૚ሻ				′࣎ࢊ

࡭ ,࢘ ࢚ ൌ
࢕ࣆ
૝࣊

න
ଚറ ,′࢘ ࢚࢘

श
ሺ૛૛ሻ							′࣎ࢊ

These two potentials are called retarded potentials
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Next we want to prove that equations (21) and (22) 
indeed are solutions to the inhomogeneous wave 
equations (17) and (18).

Green function method

A point charge q at ࢘ᇱ, the Poisson Equation is given by 

And the potential at ࢘, due to charge q at ࢘′ is given by

સ૛ࢂ ൌ ሻ′࢘ሺࢾࢗ

ࢾࢂ ࢘ ൌ
૚

૝࢕ࢿ࣊

ࢗ

࢘ െ ′࢘

If we have a charge distribution (′࢘)࣋, the potential at		࢘

ࢂ ࢘ ൌ
૚

૝࢕ࢿ࣊
න

ᇱሻ࢘ሺ࣋

࢘ െ ′࢘
ሺ૛૜ሻ						′࣎ࢊ

This is superposition theorem!!!
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Now if we want to solve an arbitrary inhomogeneous 
differential equation, such as the following

સ૛࡭ െ
૚
૛ࢉ
ࣔ૛࡭
૛࢚ࣔ

ൌ െࡶ࢕ࣆറ ,࢘ ࢚ 					ሺ૛૝ሻ

We first solve 

સ૛ࡳ െ
૚
૛ࢉ
ࣔ૛ࡳ
૛࢚ࣔ

ൌ െ૝ࢾ࣊ ࢘ െ ,ᇱ࢘ ࢚ െ ᇱ࢚ 				ሺ૛૞ሻ

The solution to eq. (25) is called the Green function, and 
the solution to eq. (24) is given by

࡭ ,࢘ ࢚ ൌ
૚
૝࣊

න െࡶ࢕ࣆറ ,ᇱ࢘ ′࢚ ࡳ ,࢘ ,ᇱ࢘ ,࢚ ᇱ࢚ ሺ૛૟ሻ			′࢚ࢊᇱ࣎ࢊ
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Now we want to show that solving eq. (17) and (18) leads to 
the solutions (21) and (22).  We will use Green function 
method. 

Solve સ૛ࡳ െ
૚
૛ࢉ
ࣔ૛ࡳ
૛࢚ࣔ

ൌ െ૝ࢾ࣊ሺ࢘ െ ,ᇱ࢘ ࢚ െ ᇱሻ࢚

The solution is given by

ࡳ ,࢘ ,ᇱ࢘ ,࢚ ᇱ࢚ ൌ
ᇱ࢚ሺࢾ ൅ श

ࢉ െ ሻ࢚

࢘ െ ′࢘
						ሺ૛ૠሻ

Substitute eq. (27) into eq. (26)

࡭ ,࢘ ࢚ ൌ
૚
૝࣊

න
ࢾ ᇱ࢚ ൅ श

ࢉ െ ࢚

श
റࡶ࢕ࣆ ,ᇱ࢘ ᇱ࢚ ′࢚ࢊᇱ࣎ࢊ
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Here we’ll solve a special case, assume that ࡶറ ,࢘ ࢚ ൌ ଚറሺ࢘ሻ ·
࢚࣓࢏ିࢋ

࡭ ,࢘ ࢚ ൌ
࢕ࣆ
૝࣊

න
ᇱሻ࢘റሺࡶ
श

′࣎ࢊ · න ࢚࣓࢏ିࢋ
ᇲ
ࢾ ᇱ࢚ ൅

श
ࢉ
െ ࢚ ′࢚ࢊ

ൌ
࢕ࣆ
૝࣊

න
ᇱሻ࢘റሺࡶ
श

′࣎ࢊ · ࣓࢏ିࢋ ି࢚
श
ࢉ (Let ࢚࢘ ൌ ࢚ െ श

ࢉ
)

ൌ
࢕ࣆ
૝࣊

න
ᇱሻ࢘റሺࡶ
श

′࣎ࢊ࢚࣓࢘࢏ିࢋ

࡭ ,࢘ ࢚ ൌ
࢕ࣆ
૝࣊

න
,ᇱ࢘റሺࡶ ሻ࢚࢘

श
′࣎ࢊ

If the above holds, then any arbitrary function of time also will be true, because we can use Fourier series.
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Next, we want to show that the retarded potentials [Eqs. 
(21), (22)] satisfy the inhomogeneous wave equations (17) 
and (18).  We start with equation (21) and take gradient:

સࢂ ,࢘ ࢚ ൌ
૚

૝࢕ࢿ࣊
න

સ࣋
श
൅ સ࣋

૚
श

′࣎ࢊ
	

	

સ࣋ ൌ
࣋ࣔ
࢚࢘ࣔ

࢚࢘ࣔ
࢞ࣔ

ෝ࢞ ൅
࢚࢘ࣔ
࢟ࣔ

ෝ࢟ ൅
࢚࢘ࣔ
ࢠࣔ

ොࢠ

ൌ ሶ࣋ સ࢚࢘ ൌ െ
૚
ࢉ
ሶ࣋ ሾસशሿ

Substitute સश ൌ शෝ and સ
૚
श

ൌ െ
शෝ
श૛

સࢂ ൌ
૚

૝࢕ࢿ࣊
න െ

૚
ࢉ
ሶ࣋
शෝ
श
െ ࣋

शෝ
श૛ ሺ૛ૡሻ				′࣎ࢊ

࢚࢘ ] ≡ ࢚ െ
श

ࢉ
]
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Take divergence of equation (28), 

સ૛ࢂ ൌ
૚

૝࢕ࢿ࣊
නሾെ

૚
ࢉ

ሶ࣋ સ ·
शෝ
श

െ
शෝ
श
· સ࣋ሶ

െሾ࣋ સ ·
शෝ
श૛ ൅

शෝ
श૛ · સ࣋ ሿሿ࣎ࢊ′

1
ंଶ െ

1
ܿ
ሷߩ ंߘ ൌ

1
ܿଶ
߲ଶܸ
ଶݐ߲

ߜߨ4 ं െ
1
ܿ
ሶߩ ंߘ

Re-arrange the above expression, we end up with

સ૛ࢂ ൌ
૚
૛ࢉ
ࣔ૛ࢂ
૛࢚ࣔ

െ
࣋
࢕ࢿ
						ሺ૛ૢሻ

ंߘ] ൌ ොं]
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Example 10.2

An infinite straight wire carries the current

ࡵ ࢚ ൌ
૙, ࢚	࢘࢕ࢌ					 ൑ ૙
,࢕ࡵ ࢚	࢘࢕ࢌ				 ൐ ૙							ሺ૜૙ሻ

Assume the wire is electrically neutral, so ࣋ ൌ ૙.

࡭ ,࢘ ࢚ ൌ
࢕ࣆ
૝࣊

ොࢠ න
,ᇱ࢘റሺࡶ ሻ࢚࢘

श
′࣎ࢊ

ஶ

ିஶ
					ሺ૜૚ሻ

റࡶ ,ᇱ࢘ ࢚࢘ ൌ ࡵ ࢚࢘ ࢾ ࢞ ࢾ ࢟ 					ሺ૜૛ሻ

(32) Substitute into (31)

࡭ ,࢘ ࢚ ൌ
࢕ࣆ
૝࣊

න
ሻ࢚࢘റሺࡵ
श

′ࢠࢊ
ஶ

ିஶ
					ሺ૜૜ሻ
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Eq. (30) describes the abruptness of the turn-on of the 
current from the point of view of the source.  At point P, 
the appearance of the current is given by 

ࡵ ࢚ െ
श
ࢉ

ൌ
૙, ࢚ ൑ श ⁄ࢉ
,࢕ࡵ ࢚	 ൐ श ⁄ࢉ

P
r

ं
Z’

So only for श ൏  I is not zero, otherwise I = 0.  Eq. (33) ,࢚ࢉ
becomes

࡭ ,࢘ ࢚ ൌ
૛࢕ࡵ࢕ࣆ
૝࣊

න
૚

૛࢘ ൅ ૛′ࢠ
′ࢠࢊ

࢚ࢉ ૛ି࢘૛

૙
ොࢠ

ൌ
࢕ࡵ࢕ࣆ
૛࣊

࢔࢒
࢚ࢉ ൅ ࢚ࢉ ૛ െ ૛࢘

࢘
ሺ૜૝ሻ					ොࢠ
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To find the fields generated by these potentials

ࡱ ൌ െસࢂ െ
࡭ࣔ
࢚ࣔ

ൌ െ
ࢉ࢕ࡵ࢕ࣆ

૛࣊ ࢚ࢉ ૛ െ ૛࢘
ሺ૜૞ሻ								ොࢠ

࡮ ൌ સ ൈ ࡭ ൌ
࢕ࡵ࢕ࣆ
૛࢘࣊

࢚ࢉ

࢚ࢉ ૛ െ ૛࢘
ሺ૜૟ሻ															ෝ࣐

For ࢚ → ∞, eq.(35) (36) approach the statics case. 

ࡱ ൌ ૙, ࡮ ൌ
࢕ࡵ࢕ࣆ
૛࢘࣊

ෝ࣐

Do they satisfy the Maxwell equations?        YES

Do they satisfy the wave equations?              YES
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Jefimenko’s equations

When we derive the retarded potentials, Eq. (21), (22), 
we just used some hand-waving arguments and 
fortunately it works. 

In general, we can not expect such simple argument 
would work.  For example, we can not write down the 
field using the retarded time argument, namely 

,࢘ሺࡱ ሻ࢚ ്
૚

૝࢕ࢿ࣊
න
࣋ ,ᇱ࢘ ࢚࢘
श૛ शෝ ′࣎ࢊ

࡮ ,࢘ ࢚ ്
࢕ࣆ
૝࣊

න
,ᇱ࢘റሺࡶ ሻ࢚࢘ ൈ शෝ

श૛ ′࣎ࢊ
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The exact form of the ࡱ and ࡮ field can be obtained 
through

ࡱ ൌ െસࢂ െ
࡭ࣔ
࢚ࣔ

࡮ ൌ સ ൈ ࡭

െસࢂ ൌ
૚

૝࢕ࢿ࣊
නെસ

࣋ ,ᇱ࢘ ࢚࢘
श

′࣎ࢊ

ൌ
૚

૝࢕ࢿ࣊
න ࣋ ,ᇱ࢘ ࢚࢘ െસ

૚
श

൅
૚
श
ሺെસ࣋ ,ᇱ࢘ ࢚࢘ ሻ	

ൌ
૚

૝࢕ࢿ࣊
න

,ᇱ࢘ሺ࣋ ሻ࢚࢘
श૛ 	शෝ ൅

ሶ࣋ ሺ࢘ᇱ, ሻ࢚࢘
शࢉ

शෝ		 					ሺ૜ૠሻ
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െ
࡭ࣔ
࢚ࣔ

ൌ െ
࢕ࣆ
૝࣊

න
ሶ′ࡶ ,ᇱ࢘ ࢚࢘

श
ሺ૜ૡሻ							ᇱ࣎ࢊ

ࡱ ,࢘ ࢚ ൌ
૚

૝࢕ࢿ࣊
න

,ᇱ࢘ሺ࣋ ሻ࢚࢘
श૛ शෝ ൅

ሶ࣋ ሺ࢘ᇱ, ሻ࢚࢘
शࢉ

शෝ െ
ሶ′ࡶ 	ሺ࢘ᇱ, ሻ࢚࢘
૛शࢉ

शෝ ሺ૜ૢሻ		ᇱ࣎ࢊ

As you can see , this is a complicated equation with no 
utility at all.  So it is not very useful. Similarly ࡮ can be 
found (see page 450 of Griffiths).

࡮ ,࢘ ࢚ ൌ
࢕ࣆ
૝࣊

න
,ᇱ࢘റሺࡶ ሻ࢚࢘
श૛ ൅

ሶ′ࡶ ሺ࢘ᇱ, ሻ࢚࢘
शࢉ

ൈ शෝࢊशᇱ														ሺ૝૙ሻ
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Lienard-Wiechert Potentials (Point Charge)

The Lienard-Wiechert potential is the retarded potential 
due to one moving point charge.  In particular when v ~ c.  
It has its origin in the special theory of Relativity.

Here we will use hand-waving argument to derive it.

We started with the retarded potentials and we assume 
Lorentz gauge.

V(࢘, ሻ࢚ ൌ ૚

૝࢕ࢿ࣊
׬
ሻ࢚࢘,ᇲ࢘ሺ࣋

श
ሺ૛૚ሻ					ᇱ࣎ࢊ

࡭ ,࢘ ࢚ ൌ
࢕ࣆ
૝࣊

න
,′࢘റሺࡶ ሻ࢚࢘

श
ࢊ ሺ૛૛ሻ						ᇱ࣎
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For one single point charge moving in a trajectory

ሻ࢚࢘ሺࢃ -- position of q at time tr

श ൌ ࢘ െ࢝ሺ࢚࢘ሻ ൌ ࢚ሺࢉ െ   (࢚࢘

श ൌ ࢘ െࢃ ࢚࢘ 						ሺ૚૙. ૝૞ሻ

It is important to note that at any time, there is only one point 
on the trajectory contribute to the potential at point P

Naively, we may think that since

ࢂ ,࢘ ࢚ ൌ
૚

૝࢕ࢿ࣊
න
,ᇱ࢘ሺ࣋ ሻ࢚࢘

श
ᇱ࣎ࢊ ൌ

૚
૝࢕ࢿ࣊

ࢗ
श

However, the above is not correct!!!
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What happen is the following:

ࢂ ,࢘ ࢚ ൌ
૚

૝࢕ࢿ࣊

૚
࢘ െ ሻ࢚࢘ሺ࢝

න࣋ ,ᇱ࢘ ࢚࢘ ሺ૝૚ሻ			′࣎ࢊ

The denominator श can come out of the integral 
without any problem, but the integral of charge is not so 
easy.  Specifically:

න࣋ ,ᇱ࢘ ࢚࢘ ′࣎ࢊ ് ࢒ࢇ࢚࢕࢚ࡽ

Because, ࢚࢘ will be different for each different points.  
So we need to evaluate ࣋ at different times for 

different ࢘′ and this leads to a distortion of the total 
charge calculated.
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For a point charge, we have

න࣋ ,′࢘ ࢚࢘ ᇱ࣎ࢊ ൌ
ࢗ

૚ െ शෝ · ࢂ
ࢉ

								ሺ૝૛ሻ

One way to verify equation (42) is shown on page 452 of 
Griffiths. The time it takes the train to travel a distance 
ᇱࡸ െ  is the same as the time for light to travel a distance	ࡸ
of ࡸ′.

′ࡸ
ࢉ
ൌ
ᇱࡸ െ ࡸ
ࢂ

ᇱࡸ ൌ
ࡸ

૚ െ ࢂ ൗࢉ
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Notice that this effect does not distort the dimension 
perpendicular to the velocity, such that the apparent 
volume ࣎ᇱ	is related to the actual volume ࣎ by

ᇱ࣎ ൌ
࣎

૚ െ शෝ · ࢉ/࢜
										ሺ૝૜ሻ

It follows that the equations (21) (22) become

ࢂ ,࢘ ࢚ ൌ
૚

૝࢕ࢿ࣊

ࢗ
श ૚ െ शෝ · ࢉ/࢜

					ሺ૝૝ሻ

࡭ ,࢘ ࢚ ൌ
࢕ࣆ
૝࣊

࢜ࢗ
श ૚ െ शෝ · ࢉ/࢜

ൌ
࢜
૛ࢉ
ࢂ ,࢘ ࢚ 				ሺ૝૞ሻ

These are the Lienard-Wiechert Potentials for a 
moving point charge.
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The formal way to solve equation (41) is to transform it 
into a new coordinate system, where time is the same 
such that the integration can take place.

න࣋ ,′࢘ ࢚࢘ ′࣎ࢊ ൌ න࣋′ ,૚࢘ ૚࢚ ૚࣎ࢊ 				ሺ૝ૠሻ

Alternate approach to derive eqs. 44, 45

࢚࢘ ≡ ࢚ െ
श
ࢉ
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We expand ࢘૚ in terms of ࢘′ , using Taylor expansion

૚࢘ ൌ ′࢘ െ ࢜ ࢚࢘ ࢚࢘ െ ૚࢚ ൅ ሺ૚/૛ሻ࢜ሺሶ ሻ࢚࢘ ࢚࢘ െ ૚࢚ ૛൅. .

૚࣎ࢊ ≡
ࣔ ,૚࢞ ,૚࢟ ૚ࢠ
ࣔ ,ᇱ࢞ ,ᇱ࢟ ᇱࢠ

ሺ૝૟ሻ					ᇱ࣎ࢊ

where

ࣔ ,૚࢞ ,૚࢟ ૚ࢠ
ࣔ ,ᇱ࢞ ,ᇱ࢟ ′ࢠ

ൌ

૚࢞ࣔ
′࢞ࣔ

૚࢞ࣔ
′࢟ࣔ

૚࢞ࣔ
′ࢠࣔ

૚࢟ࣔ
′࢞ࣔ

૚࢟ࣔ
′࢟ࣔ

૚࢟ࣔ
′ࢠࣔ

૚ࢠࣔ
′࢞ࣔ

૚ࢠࣔ
′࢟ࣔ

૚ࢠࣔ
′ࢠࣔ

݂ ݔ ൌ ݂ ܽ ൅
݂ᇱ ܽ
1

ݔ െ ܽ ൅
݂ᇱᇱ ܽ
2!

ݔ െ ܽ ଶ ൅
݂ᇱᇱᇱ ܽ
3!

ݔ െ ܽ ଷ ൅⋯
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૚࢞ࣔ
′࢞ࣔ

ൌ ૚ െ ᇱ࢞࢜
࢚࢘ࣔ
ᇱ࢞ࣔ

൅ ⋯
૚࢞ࣔ
′࢟ࣔ

ൌ ૙ െ ᇱ࢞࢜
࢚࢘ࣔ
ᇱ࢟ࣔ

൅ ⋯

And ࢚࢘ ൌ ࢚ െ
࢘ െ ′࢘

ࢉ

Then ࢚࢘ࣔ
′࢞ࣔ

ൌ
श࢞

ࢉ
	; 							

࢚࢘ࣔ
′࢟ࣔ

ൌ
श࢟

ࢉ
;									

࢚࢘ࣔ
′ࢠࣔ

ൌ
शࢠ

ࢉ

शෝ ൌ श࢞ଙ̂ ൅ श࢟ଚ̂ ൅ श࢑ࢠ෡
and it is the unit vector in the 
࢘ െ 	ᇱ࢘ direction.

ࣔ ,૚࢞ ,૚࢟ ૚ࢠ
ࣔ ,ᇱ࢞ ,ᇱ࢟ ′ࢠ

ൌ ૚ െ
࢜ · शෝ
ࢉ

൅⋯ ൌ
૚࣎ࢊ
′࣎ࢊ

ᇱ࣎ࢊ ൌ
૚࣎ࢊ

૚ െ शෝ · ࢜ ൗࢉ
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Example 10.3

Find the potentials of a point charge moving with a 
constant velocity.

Since it is a constant velocity motion, the trajectory is a 
straight line.  Let’s choose the line such that it pass 
through the origin at t = 0.

࢝ ࢚ ൌ ࢚࢜

श ൌ ࢘ െ ࢚࢘࢜ ൌ ࢉ ࢚ െ ࢚࢘ 					ሺ૚૙. ૝૝ሻ

Square above eq. and then solve for ࢚࢘	(See page 49).

Since ࢚࢘ is the retarded time, we choose

࢚࢘ ൌ ࢚ െ
࢘
ࢉ
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We first compute the retarded time, using (10.44)

Next

श ૚ െ
शෝ · ࢜
ࢉ

ൌ ࢉ ࢚ െ ࢚࢘ ૚ െ
࢜
ࢉ
·
ሺ࢘ െ ሻ࢚࢘࢜
ࢉ ࢚ െ ࢚࢘

ൌ ࢉ ࢚ െ ࢚࢘ െ
࢜ · ࢘
ࢉ

൅
૛࢜

ࢉ
࢚࢘

ൌ
૚
ࢉ

࢚૛ࢉ െ ࢜ · ࢘ െ ૛ࢉ െ ૛࢜ ࢚࢘

=	૚
ࢉ

࢚૛ࢉ െ ࢘ · ࢜ ૛ ൅ ૛ࢉ െ ૛࢜ ૛࢘ െ ૛࢚૛ࢉ (2)

Substitute the above into (10.46) and (10.47), we end up with:

૛࢘ െ ૛࢘ · ࢚࢘࢜ ൅ ૛࢚࢘૛࢜ ൌ ૛ࢉ ૛࢚ െ ૛࢚࢚࢘ ൅ ૛࢚࢘ (10.48)

࢚࢘ ൌ
࢚૛ࢉ െ ࢘ · ࢜ േ ࢚૛ࢉ െ ࢘ · ࢜ ૛ ൅ ૛ࢉ െ ૛࢜ ૛࢘ െ ૛࢚૛ࢉ

૛ࢉ െ ૛࢜



3/30/2016

8

3/21/2016
C

h
apter 10 P

oten
tials an

d F
ields

43

ࢂ ,࢘ ࢚ ൌ
૚

૝࢕ࢿ࣊

ࢉࢗ

࢚૛ࢉ െ ࢘ · ࢜ ૛ ൅ ૛ࢉ െ ૛࢜ ૛࢘ െ ૛࢚૛ࢉ

࡭ ,࢘ ࢚ ൌ
࢕ࣆ
૝࣊

࢜ࢉࢗ

࢚૛ࢉ െ ࢘ · ࢜ ૛ ൅ ૛ࢉ െ ૛࢜ ૛࢘ െ ૛࢚૛ࢉ

Now if we let ࢜ ൌ ଙ̂࢜ and ࢘ ൌ ෡࢑ࢠ

ࢂ ,ࢠ ࢚ ൌ
૚

૝࢕ࢿ࣊

ࢉࢗ

૛࢚૝ࢉ ൅ ૛ࢉ െ ૛࢜ ૛ࢠ െ ૛࢚૛ࢉ

ൌ
૚

૝࢕ࢿ࣊

ࢗ

૛ࢠ ൅ ૛࢚૛࢜ െ ૛ࢠ૛࢜

૛At t = 0ࢉ

ࢂ ,ࢠ ૙ ൌ
૚

૝࢕ࢿ࣊

ࢗ

ࢠ ૚ െ ૛࢜
૛ൗࢉ

ൌ
૚

૝࢕ࢿ࣊

ᇱࢗ

ࢠ
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The fields due to Lienard-Wiechert potentials

Once the Lienard-Wiechert potentials are known, the 
fields can be obtained through

ࡱ ൌ െસࢂ െ
࡭ࣔ
࢚ࣔ
࡮			&					 ൌ સ ൈ ࡭

Conceptually, it is straight forward and simple.  But in 
reality, it is an exercise in vector calculus.  See page 456-457 
of Griffiths for details.  In the end we have

ࡱ ,࢘ ࢚ ൌ
ࢗ

૝࢕ࢿ࣊

श
श · ࢛ ૜ ࢛ ૛ࢉ െ ૛࢜ ൅ श ൈ ࢛ ൈ ࢇ

࢚ࢋ࢘
	ሺ૝ૠሻ

࡮ ,࢘ ࢚ ൌ
૚
ࢉ
श ൈ ࡱ

࢚ࢋ࢘
						ሺ૝ૡሻ ࢛ ≡ शෝࢉ െ and࢜
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There are two terms in eq. (47)

1st term
ࢗ

૝࢕ࢿ࣊

श
श · ࢛ ૜ ࢛ · ૛ࢉ െ ૛࢜

࢚ࢋ࢘

This eq. does not depend on acceleration.  It is called 
generalized Coulomb field, because if v=0, this part 
goes back to the static field.

Let ࢛ ൌ शෝࢉ െ ࢜

2nd term

The 2nd term depends on acceleration.  This is called 
radiation field.

࢔࢕࢏࢚ࢇ࢏ࢊࢇ࢘ࡱ ∝
૚
श
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The static field satisfies the Gauss Law.  No energy 
radiated out.

For the radiation field, it does not satisfy the Gauss law.  
But it does agree with conservation of energy.

න ࢛࢞࢒ࢌ	࢟ࢍ࢘ࢋ࢔ࢋ · ࢇࢊ ൌ ࢚࢔ࢇ࢚࢙࢔࢕ࢉ

ࢊࢇ࢘ࡱ ૛ ∝ ࢛࢞࢒ࢌ	࢟ࢍ࢘ࢋ࢔ࢋ ∝
૚
श૛
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Example 10.4

Calculate the ࡱ and ࡮ field of a point charge moving with 
a constant velocity along the x-axis.

x

y

P

श࢘

ሻ࢚࢘ሺࢃ

ࡾ

ሻ࢚ሺࢃ

ࢃ ࢚࢘ ൌ ࢚࢘࢜ ൌ ෝ࢚࢞࢘࢜

࢜ ࢚ െ ࢚࢘ ൌ
࢜
ࢉ
श

श ൌ ࢘ െࢃ ࢚࢘ 			; 			श ൌ ࢚ሺࢉ െ ሻ࢚࢘

Equation (10.72) becomes

ࡱ ൌ
ࢗ

૝࢕ࢿ࣊

श
श · ࢛ ૜ ࢛ ૛ࢉ െ ૛࢜ 						ሺ૝૚ሻ

࢛ ≡ शෝࢉ െ ,࢜ श െ
࢜
ࢉ
श ൌ

श
ࢉ
शෝࢉ െ ࢜ ൌ

श
ࢉ
࢛ ൌ ࡾ
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श · ࢛ ൌ श ·
ࢉ
श
ࡾ ൌ ࢉ शෝ · ࡾ ൌ ࢉ ૛ࡾ െ

૛࢜

૛ࢉ
श૛࢔࢏࢙૛ࣂᇱ

But शࣂ࢔࢏࢙ᇱ ൌ ࣂ࢔࢏࢙ࡾ

श · ࢛ ൌ ࢉࡾ ૚ െ
૛࢜

૛ࢉ
ࣂ૛࢔࢏࢙

ࡱ ,࢘ ࢚ ൌ
ࢗ

૝࢕ࢿ࣊

૚ െ ૛࢜

૛ࢉ

૚ െ ૛࢜

૛ࢉ
ࣂ૛࢔࢏࢙

૜/૛

෡ࡾ

૛ࡾ

The direction of the non-radiative ࡱ field is in the direction of ࡾ, namely 
from the present position of the charge.  This is an extraordinary 
coincidence, since the “message” came from the retarded position.
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New notes added

From eq. (2) of slide 42, we can see that

૚
ࢉ

࢚૛ࢉ െ ࢘ · ࢜ െ ૛ࢉ െ ૛࢜ ࢚࢘

=૚
ࢉ

࢚૛ࢉ െ ࢘ · ࢜ ૛ ൅ ૛ࢉ െ ૛࢜ ૛࢘ െ ૛࢚૛ࢉ

Re-arrange the above equation, and solve the quadratic 
equation of ࢚࢘, we end up with

࢚࢘ ൌ
࢚૛ࢉ െ ࢘ · ࢜ േ ࢚૛ࢉ െ ࢘ · ࢜ ૛ ൅ ૛ࢉ െ ૛࢜ ૛࢘ െ ૛࢚૛ࢉ

૛ࢉ െ ૛࢜

To fix the sign, consider the limit, v = 0

࢚࢘ ൌ
࢚૛ࢉ േ ࢚૛ࢉ ૛ ൅ ૛ࢉ ૛࢘ െ ૛࢚૛ࢉ

૛ࢉ
ൌ ࢚ േ

࢘
ࢉ


