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OUTLINES

 A brief history of magnetostatics

 The Lorentz Force Law

 The concept of current

 The Biot-Savart Law

 The divergence and curl of B field

 The magnetic vector potential
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A brief history of magnetostatics

The Chinese compass was invented 
around 4th century BC.

In 1600, William Gilbert 
published “De Magnete”, one of 
the first book on electricity 
and magnetism.  Gilbert was 
regarded by some as the father 
of electricity and magnetism.
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In 1820, Hans Oersted discovered the 
relationship between electric current and 
magnetic field, namely a current 
carrying wire will deflect the needle of a 
compass.

In the same year, Jean-Baptiste Biot and 
Felix Savart found that the magnetic 
field varies inversely with the distance 
from the wire and curl around the 
current. The equation describing the 
magnetic field generated by a current 
bears their names.

′
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Ampere learned about Oersted’s result in 
1820 and started to develop a theory to 
understand the relationship of electricity 
and magnetism.  Ampere showed that two 
parallel wires carrying current will attract

·

or repel each other depending on whether the currents 
are in the same or opposite direction.  

In 1826, Ampere discovered the Ampere’s law.
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Then in 1831, Michael Faraday proposed 
that change in the magnetic flux can also 
produce electric field----Faraday’s law of 
induction.  The “field line” concept also 
came from Faraday.

·

James Maxwell in 1864 published his 
Maxwell’s equations which combined 
Gauss’s law, Faraday’s law, and the 
modified Ampere’s law.  Maxwell coined 
the phrase “the electromagnetic field” for 
his theory. 
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Maxwell Equations

• ∮ · ·

• ∮ · ·

• ∮ ·

• ∮ ·
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Let’s put things into perspective.

Electrons were discovered by J. J. 
Thomson in 1897.  He found that the 
cathode rays in a cathode ray tube 
travel further in air than ions.  He 
estimated that the mass of cathode rays 
to be at least 1000 times lighter than 
hydrogen.

In 1887, Michelson and Morley 
performed the experiment bears their 
name.  They show that there is no 
“aether” and pave the way for the 
development of special relativity.
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The Lorentz force law

When a charge q moving in a magnetic field , it 
experiences a force called the Lorentz force

· 									

If both E and B are present

Since the Lorentz force is always perpendicular to 
the velocity, therefore no work done by Lorentz force.
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Example 5.2 Cycloid motion

A uniform magnetic field is in the x-direction while 
another uniform electric field is in the z-direction as 
shown.  Find the trajectory of a charge particle starting at 
rest at the origin.

Initially at rest at the 
origin, the charge will 
experience a force in the z-
direction , so initial 
velocity will be in the z-
direction. The Lorentz 
force will move the charge 
in the y-direction.

, ,
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̂
	=  ̂

Let , 	 	 	 	

(1)

							

Take derivative of (1) and then substitute into (2), then 
integrate over time once, we end up
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The solution to the previous equation can be

y(t) = 

Substitute back into (2), we arrive at

sin

Apply the initial conditions, at t = 0, , 	 .

and        

and       
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Let 

This is the equation 
for a circle of radius 
R with the center at
(Rωt, R)

R

(Rωt, R)
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Current & Current density

Current in a wire (1D) is defined as 
the amount of charges passing 
through a point per unit time.

Ampere = Coulomb per second

If line charge density is and velocity is V,

Since the current is almost always confined in a 
conducting wire, we  can use the direction of the wire to 
indicate the direction of current
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A 3-D current model (Ideal gas model)
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The concept of Lorentz force on a “charge” can be extended 
to “current”, since “current” can be viewed as “charge 
density” times velocity.

Since direction of I is the same as dl, and I is usually a 
scalar constant, 
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Example 5.3

A rectangular loop of wire, supporting a mass m, hanging 
vertically with one end in a uniform magnetic field as shown.  
What current would be needed to balance the gravitational force?

What happens if we increase the current?

The magnetic force now will be larger 
than gravitational force mg, and the mass 
will rise.

Does that means the magnetic force 
actual do work?
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When the loop starts to rise, the charge no 
longer moving horizontally, it acquires a 
vertical component u, so also tilts left 
as shown.  is still perpendicular to , 
no work done on charge q.  The vertical 
component, qwB which can be written as 

The horizontal force, , so the work done by 
battery to overcome is

λ

This is similar to sliding a block 
up a frictionless ramp, pushing 
horizontally
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When charge flows on the surface of a conductor (two dimensional), 
we describe it by the “surface current density” K as

When the flow of charge is 3D, we describe it by the volume 
current density, 

= ·

· ·
· ·
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From definition of current density

·

From divergence theorem, we have

⋅ ·

From conservation of charge, the amount of charge leaving 
a volume

·

Combine with previous equation, we have

·
For magneto-statics

·

They are 
different
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The Biot-Savart Law

Steady current is the source that produce magnetic field 
in magnetostatics.  It plays exactly the same role as 
stationary charge in electrostatics.  The Biot-Savart law 
plays the exactly same role in magnetostatics as the 
Coulomb’s law which links the source to the field

Electrostatics Magnetostatics

Source Stationary charges Steady current

Equation Coulomb’s Law Biot-Savart Law

Field* Diverge from a point Curl around a line

Field*---Electric field produced by one point charge, or magnetic 
field produced by a current on a straight wire.
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The magnetic field produced by a steady current,

′

where is the permeability of the free space.

		

. ⁄ (Speed of light)

The unit of magnetic field 

	 	
· (MKS unit, or SI unit)

	 	
·

(cgs unit)
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Example 5.5 Find the magnetic field a 
distance s from a long straight wire 
carrying a steady current I.

The Magnetic field is given by

′

′ · α

· , 			 						 ·
·

and   
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· ·

·

For infinite straight line,

Now if we have two long parallel wires carrying current 
I1 and I2, the force between them is
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		=   

Force per unit length is given by

Example 5.6 Find the magnetic field above the center of a 
circular loop.

′
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The divergence and Curl of 

For a straight wire carrying a current I, the magnetic field 
at a distance R is given by

The line integral of this magnetic field is

·

This is Ampere’s law.  This is true for any shape of 
closed loop around the current.

11/16/2016
C

h
apter 5    M

agn
etostatics

27

We can show that in cylindrical coordinates

,

Substitute into the equation below

· ·

From Stoke’s theorem and definition of current density

· · ·

Ampere’s Law in 
differential form
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Formal derivation of and ·

We start out with the Biot-Savart Law

′

· · 					 ···

Apply product rule (4) on page 21 of Griffiths to eq. (1) above

· · ·

0
0

·

Page 57
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Next we’ll take the curl of the Biot-Savart law,

′

The integrant can be re-arranged

· · · ·

( ) 0

The second term on the right hand side goes to zero 
can be seen on next page.

0 0
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First, we can switch from to ′ and change a sign as below

· · ′

Next, we will look at the x-component of the above equation 
and use integration by parts

· ·
′

′ ·

0

· ·

(J is zero at large boundary)



11/16/2016

6

11/16/2016
C

h
apter 5    M

agn
etostatics

31

Applications of Ampere’s Law

The Ampere’s law can be written in integral form

·

Ampere’s Law in magnetostatics plays exactly the same 
role as the Gauss’s Law in electrostatics.  But Ampere’s 
law is a line integral while the Gauss’s law is a surface 
integral.

Electrostatics Coulomb’s Law Gauss’s Law

Magnetostatics Biot-Savart Law Ampere’s Law
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Example 5.8  Find the magnetic field of an infinite uniform 
surface current flowing over the xy plane.

The way we solve this problem is 
very similar to the infinite 
uniform surface charge problem 
of Example 2.4 on page 73.

Apply Ampere’s Law, we have

·

/ 				 			

			 			

11/16/2016
C

h
apter 5    M

agn
etostatics

33

Example 5.9 Find the magnetic field of a very long solenoid 
consisting of n closely wound turns per unit length.

(a) First we argue that there is no magnetic field in the 
radial direction.

(b) Second we argue that there is no magnetic field in the 
azimuthal direction ( .

(c) Third, we argue that outside the solenoid the magnetic 
field is equal to zero.

(d) Last we argue that the magnetic field inside the 
solenoid is uniform and in the z-direction.

(e) Use Ampere’s Law, we found the field inside to be 
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Magnetostatics and Electrostatics

Magnetostatics Electrostatics

· ·

· ·

·
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Magnetic Vector Potential

From the fact that · ,		we can set up a vector 
potential, such that 

To find the expression for , we start from Biot-Savart law,

′

= ′

′

0
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Re-arrange the previous equation, we can see that

′

We let the expression in the parenthesis equal to the vector 
potential of the field. For comparison, electric potential, 
V(r) is also shown below.

If we add a gradient term to , and let 	 , the 
magnetic field will remain the same as shown below.

′

0

′ ′
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The situation here is similar to the electrostatics case, 
where add a constant to the potential does not change the 
electric field at all.
In magnetostatics, adding a gradient term to the vector 

potential ′, is called gauge transformation. 

It can be used to choose a particular vector potential.  For 
example, we can choose a vector potential that is 
divergence-free.

·

This will lead to

·
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This means that if is not divergence-free, then we add a 
to it until it is divergence-free.  To find out the exact 

functional form of , we can either solve the Poisson 
equation at the end of last page, or we can explore the 
similarity between electrostatic and eq. on page 33.

·

What this means is that Ampere’s Law becomes

·

·
Coulomb Gauge

We reduce the magnetostatics problem into solving 
Laplace equation, just like in the electrostatics case.

0
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Example 5.11 A spherical shell of radius R, carrying a 
uniform surface charge σ, is set spinning at angular velocity 
ω.  Find the vector potential at point r.

Rotate the axis such that the direction is the same as the 
. The surface current is given by , and 	is the 

velocity of the shell,

′

The is pointing at an angle ψ from the direction.

11/16/2016
C

h
apter 5    M

agn
etostatics

40

′ ′

′ ′ ′

= 
′

′

The integration is over the surface of the sphere

′ ′
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And ′ is independent of ′, 
so all integrations involving sin ′ or cos ′ will be zero, 
and the only term left is ′

·

Let , and 

(for convenience we drop the prime notation)
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So the integral becomes

								

For R > s  (inside the shell), equation (1) becomes
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For R < s, (outside of the shell), equation (1) becomes

So the vector potential becomes
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Since · , we can re-arrange the 
equations

(inside)

(outside)

Now we convert back to the original coordinates with 
, and , and , and 

(inside)

(outside)
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The magnetic field inside and outside of the shell can be 
derived from the vector potential 

Similarly the magnetic field outside can be found

Compare to eq. 3.103, we can see that it has the form as an field 
due to an electric dipole moment.
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In Coulomb gauge, we have 

·

In magnetostatics, we have

·

Since the equations on the left, are almost identical to the 
equation on the right side, we can use the functional form of 
Biot-Savart law to express the vector potential as follow.

′ ′

Biot-Savart Law(This is true in Coulomb gauge only)
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Summary:

In summary, we show the relationship between source (J), 
Field (B) and the vector potential (A) in magnetostatics
below.  It is quite similar to the case of electrostatics.

Missing link?
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Magnetostatic Boundary conditions

Start with · , we look at the normal 
component of the magnetic field across a 
surface current 

·
	

Now start with , and do the line 
integral show on the figure to the right:

· ∥ ∥
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Like the scalar potential in electrostatics, the vector potential is continuous 
across any boundary, because · 		(Coulomb gauge) guarantees that 
the normal components of are continuous, while means that 
the tangential components of are also continuous,

but

We can combine the two equations on page 48 

This can be compared with the equation in electrostatics

(right at the boundary)

· · ⟹
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The next 3 pages are from Chapter 2, which discuss the 
boundary conditions across a surface charge 
distribution σ

Apply Gauss’s Law

·
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·

	

·

	

From symmetry argument, the magnitude of the field 
above and below should be the same, but the directions 
are different.

The normal component of the electric field has a 
“discontinuity” across the charged boundary.
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Tangential component of the E field.

Now we turn our attention to the 
tangential component of E field near a 
surface charge distribution.

·

= ∥ ⋅ ∥ ⋅

So the parallel component of the E field is continuous 
across the surface charges.  In general, we can write the 
boundary condition as follow:

=

∥ ∥

(right at the boundary)
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Multipole expansion of the vector potential

From page 33, we can see that the vector potential can be 
expressed as

′ ′

From eq. 3.94, we can expand 	 	 	 , 	 .

· ′

Substitute into the expression for we end up with
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Now let’s look at the first few terms of the previous 
equation. 

For n = 0,

· ·

For n = 1

· · ′

For n = 2

· ·

This is multipole expansion for the vector potential .
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For n = 0, it is corresponds to the monopole term and 

This implied that magnetic monopole term equals to zero, 
or magnetic monopole moment does not exit.

For n = 1, this is the magnetic dipole term and

′ · ·

′ · 	

Note that prime system indicates the source system.  Since 

is referring to current direction, so ′, but l ≠ r’
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Now let “d” represent “differential” wrt the prime coordinates

· ′ ′ · ′ ′ · ′ ′

Since the closed loop integral of any vector equals to zero,

· ′ ′

· ′ ′ · ′ ′

and

′ ′ · ′ ′ · ′ ′

From vector triple product rule (Eq. 1.17, page 8)

11/16/2016
C

h
apter 5    M

agn
etostatics

57

′ ′ · ′ ′

Since ′ , we will use the results from above and  

· ′

Substitute back into eq. on page 55, we have

∮ ′

	
·

As a comparison
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The magnetic dipole moment is defined as follow

′ ′

For a planar loop

′

r’

dl

From above equation, we can see that the magnetic dipole 
moment is independent of the choice of origin.  This is not 
surprising because there is no magnetic monopole.
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The Vector potential and magnetic field due to a magnetic dipole 
located at the origin can be expressed in spherical coordinates
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Ideal Dipole Physical Dipole


