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ELECTRIC FIELD IN MATTER

Lee Chow
Department of Physics
University of Central Florida
Orlando, FL 32816
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* The electric displacement, D
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Polarization

In this chapter we study the effect of an external electric
field (E) on a dielectric material. Dielectric materials are
insulators and electrons inside dielectrics are bound to
atoms or molecules (bound electrons).

The fundamental concepts in this chapter can be
described by the linear response theory. The basic idea
is outline below.

Input Output
_—> Black box _—

Examples

Resistor —\WN— V=IR

R
Capacitor _l H V() = f@dt

. . dt
RC circuit VE) = Ve g

X-ray scattering

e~ =3 1@) = F(@S@)

T3 H__A f(q) is the form factor

S(q) is the structure factor.
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For example, we can apply an external magnetic field to
a magnetic material such as nickel. The magnetic
moment in nickel responded to the external magnetic
field by aligning itself to the magnetic field and the net
result is magnetization M produced by the aligned
magnetic moments.

M= y,H

Xm is the magnetic susceptibility of the material, x,, is a
response function. In the most general case,

MV(E,Q) = Zfde)(w(E,ﬁ,Q,w) H,(q, w)
q K

Example 4.1: Atom in electric field.

‘What happens to a neutral atom when it is placed inside an
electric field? We assume (1) uniform electron distribution
and (2) assume the positive charge only moves a very small

amount, so we can ignore it.

The net field on the positive charge is
the sum of the pull of the negative
charge plus the push of the external
field. At equilibrium it equals zero,
s0:

1 qd =
" 4me, a3 Bk
p= (4me,a®)E by
p=aE
And a = 4me,a® = 3¢,V V = volume
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For a molecule, there is no symmetry in general, so the
polarizability maybe different for different direction.

p=aE, +aE
In the most general case in 3D,
px axx axy aXZ Ex
Py |=|%x @y ay||E,
pZ azx azy aZZ EZ
We use the lower case p to indicate the dipole moment
of a single atom or molecule. We use upper case
P to indicate the polarization of the medium.

YD

}_5 = ==—" Definition of Polarization

13dey)  GI0Z/F0/TT

1 919991 ¥

Alignment of polar molecules
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There are certain molecules that already have dipole

moment. The applied electric field E will try to align
the dipole moment p in the same direction as the field.

p=qd
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In a uniform electric field E, the net force on the
dipole moment is zero and the net torque N on the
dipole moment p is

N=(F, xF,)+(F-xF.) /

W= (@) <@y
[(=%2) % (-qE)] =T
=qdxE
N=pxE

In a non-uniform field, in addition to the above torque,
there will be an additional net force acting on the dipole
moment

F=q(E,-E_) = q(AE)
This can be re-written as
F=@®-VE

Please note that these equations are true even we
have perfect ideal dipole moment.
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The field produced by a polarized object

Here we want to find out what is the field (or potential)
produced by a dielectric material.

We can treat the dielectrics as material that consists of
many dipole moments.

The potential due to ONE ideal dipole moment is
1 B-F
" 4ame, 1?2

V()

The potential due to many dipole moments;

1 fﬁ(r’)-f?

41e, 72

V@) = dr (4.9)

Since V' (%) =2 this leads to

72’
1 — 1
fP-V' —)dt’
4me, 7

Integrating by part,

(o (P)ar— (L. Prae
4C) =4n60f\7 ~(;)d‘r —f;(v -P)dr

Using divergence theorem, the 1% term becomes a
surface integral

T f P-da —— fl(V’F)d’
" 4me, | r a 4me, | r t

V(r) =
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Let P-n=oy Surface bound charges
-V ﬁ = pp

Volume bound charge

The equation at the end of previous page becomes

1 (op . , 1 (pp,,
V() = ame, —da’ + e f 7(11.’

The potential produced by a dielectric object is
equivalent to the potential produced by o} and pj,.
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Physical interpretation of bound charges
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Example 4.2 Find the electric field produced by a
uniformly polarized sphere of radius R. i

We choose the direction of polarization
to be in the z-direction, P = P,Z.

Bound surface charge, g, = P - i=Pcosf
Bound volume charge, p, = -V-P =0

From example 3.9, equations (3.86) and (3.87)

P
3€o

V(r,0) =—rcosd (Inside) r<R

PR3 1 "
V(r,6) = ez cos@ (Outside) r>R
0

Once we know the potential, the field can be found.
Inside
av 10V

E=—VV=—ET—;@9

Fe - cosOf + ——sind0 = ———2  (4.14
= ——cosOr sinff = — b
3¢, 3¢, t 3602 ( )
Outside
4m 3
_PR%cos@ 1 3 R°P

=— = cos6
3¢, 12 4me, 12

1 R
" 4me, 12
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So the potential produced outside the polarized
dielectric sphere is equivalent to the field produced by a
perfect dipole with a moment that is the sum of all
dipole in the sphere. The electric field outside is also the
same as the field generated if all dipoles were located at
the center of the sphere.

1 2p;
"~ 4me, 13 cos6
1 Py
Eg = — sin6
%~ 4me, r3 st

Example 4.3 Two uniformly distributed but oppositely
charged spheres are slightly displaced such that their
centers are separated by a displacement of d as shown.
Find the potential due to this charge distribution.

From Problem 2.18, we know that the af’
field at the overlap region is 3 j

P
P=y

- d — 1

F--~ % mm) E--_F
4me, R3 3¢,

Outside the sphere, we can treat this situation as if all

charges are concentrated at the respective centers of the
spheres:

>

. 1 :
" 4me, 12
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The field inside a dielectric

When we derive the equation to describe the field due to
polar molecules and dielectric, we use the ideal dipole
formula (slide 11). It is ok to do so when we calculate the
field outside of the dielectric. Here we want to show that
we can use the same formulism to calculate the electric
field even inside the dielectric.

Here we are dealing with

macroscopic field, which is an
average field over a region that

contains many thousand of

atoms, but still small enough

that the concept of differential
volume still hold true. dielectric
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The net electric field at point P, is the sum of the Eout
produced by dipoles outside of the sphere and E;,,
produced by dipoles inside the sphere.

E=Eju+Eou

Field produced by ouside dipoles

The Eout is relatively easy, since all dipoles are relatively
far away,

dt’

Vour =

1 f P -7
ATCEy Joyy 12
and

faut: —VWour

©3dey)  CT0ZA0/TT
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Field produced by dipoles inside the sphere
For the field due to dipoles inside the sphere, we use the
result from problem 3.47, i.e. (eq.3.105)
— 1 pr
E,L=— L
ave 4me, R3

where Py is the total dipole moment inside the sphere.
_ 4n — - P
pr=(5R)P B Ep=-o—
3 3¢,
This is the same result (eq. 4.14) derived in Example 4.2

on page 175. So in general, we can integrate the whole
space (inside + outside) to find the potential at point p.

1 P-7
= ——dt
41e, 72z
all space

4
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The Electric Displacement

‘We found that the effect of polarization can be “simulated”
by assuming bound charges, p, and o}, generated by P
pp=-V-P

We call all the other charges the “free charges”

0'b=P'ﬁ

Ptotal = Pb T Pf
The Gauss’s law becomes

euV-f=p=pb+pf=—V-ﬁ+pf
V-(E+P)=p; Let D=eE+P

V-B:pf

Or in integral form, we have

%B E = Qf,enc

However, there is NO Coulomb law for the electric
displacement. Also note that the units of E and D are
different.

Electric Field E E Volt/m
Electric displacement D ‘ Coulomb/m?2
Polarization P ‘ Coulomb/m?2
Permitivity of free space €, ‘ 8.85x 10712 C2N"1m~2
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Problem. 4.15
A spherical shell (hollow sphere)is made of dielectric
material with a polarization:

~ k.
P=-7
r
Find the electric field in all three different
regions. 0 .
E,,V'E:pb-f-/:—V'P pb:_r_z

op(r)=P-71  op(@)=-%a, apb) =%,

Region I El =0

Region II Ey = _Lf- .’
T€,

Region II1 Enn=0
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Region I (inside a)

fEﬁ Q::”:o ) E; =0
Region II (inside the dielectric)
$F da=dee Qene = Csury + Quor
QSqu = o,(r = a) - 4wa® = —4nka

Qo = fp,,dr = J' (— E) 4nridr = —4nk(r — a)

Qem = (- 41rka) + [-4mk(r — a)] = —4mkr

= k7
= €T

CTOZ/HO/TT
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Region III (r>b)

We will use Gauss’s law again. The total enclosed
charges have three parts.

Qenc =Qs(r=a)+ Qv+ Qs(r = b)

Qs(r = a) = —4mka
Qs(r = b) = 4mkb
b

b
k
= fﬂb-4nr2dr=f(—r—2>4nr2dr
a

Qy = —4-11'k(‘;) —a)

Qenc=0 ———> Ep=0
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Now if we use eq. 4.23,

Region I
fn di=Q, =0, D=0=¢kE+P
= P
Ei=——=0
Region IT €o
7 P k7
I e, €r
Region IT1
Enp= E_ 0
m=-o=

Warnings

(1) No Coulomb law for D, because VXD maybe

non-zero.

(2)Vx5=eo(v/E)+(Vx?)=VXﬁ

(3) No potential can be defined for D.
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Boundary Conditions for E field

_gl

below ~

gl

Above

EL

=0

L —
above — Ebelow - _

Boundary conditions for displacement, D

D! p!

above Dbelow above

1 —
Dabove - Dbelow -

Pbelow
i
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Linear Dielectrics
For one neutral atom we have
p=akE a - polarizability

For dielectric material, we have

P= NT) N is the number of dipoles per unit Volume

If we assume that P « E, and let

P =€,x.E Linear dielectric
Xe is the electric susceptibility

In the most general case,

P = €,[)x1E + X2E? + X3E3 + -]
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D= eOE+F =€,(1 +xe)f

Let € = €,(1+ xe)

We can also define

€
k=—=(1+x.)
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Example 4.5 A metal sphere of radius a carries a charge
Q. Itis surrounded , out to radius b, by a linear dielectric

material of permitivity e. Find the potential at the center.

We know free charges but not bound charges. Use Gauss’s law for D.

- Q
= T Forr>a
b amr? Q
Forb>r>a _
5 _D_10.
n =T dmer? !
Forr>b
; _D_ 1 e
out = e, 4me,r?

©3dey)  CT0ZA0/TT
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EU
Permitivity
K Dielectric constant
Xe Electric susceptibility
The potential at the center is: 0

0 b a 0
v=_ff.a=_ fﬁwt-m—ffmﬁ—f ndl -
& & 2 5

Q1 1 1

" 4m|e,b  ea eb

(b) Surface bound charges on the dielectric sphere?

— - €oXeQ . = €0XeQ
Pecf= s =P Gl(v
n Pr=0
op=P- =%l (atr=h)
a,,=1—’~ﬁ=—%g (atr=a)

4me a?

~——
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*Nl =

For linear dielectric materials
D =¢E
However, this does not imply that V X E = 0 will

automatically lead to V X D = 0 because € can be a
function of position.

For a single crystal, the susceptibility can be a tensor.

P, Xxx Xxy Xxz E,
Py = €y ny ny Xyz Ey
p, Xzx Xzy Xzz E,

Boundary value problems with linear dielectrics

In a homogeneous linear dielectric

D =¢€,(1+x)E =€E

and . .
P = €,x.E
This leads to .
N D Xe .
P= —= D
etz = (72)

Assume that y, is a constant, take divergence on both

side
- Xe
Pp 1+, Pr

CTOG/FO/TT
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Boundary conditions between two dielectrics

Ej, and D,
E, and D,
Gauss’s law for D For the E field
Dy, — Dg, = o5 VXxE=0
€pEp —€4Eq =0 N
bLEbL albal f ng-dl:O
Ifo;=0
2 Eq) = Ep)
Dy = Dqy
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Example 4.7 A sphere of homogeneous linear dielectric
material is placed inside an otherwise uniform field, Find
the electric field inside the sphere.

This problem can be solved as a boundary value problem. The
general solution of Laplace equation is given in eq. 3.65

Vin = ZAlr’Pl(cose)
=0

B,
Vout = —E,rcos6 + ; mP,(cosG)

CTOZ/HO/TT
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The boundary conditions are:

1) Vin = Vour atr=R
@) eZin=g,Zom  ar=R

A3) Vour —> —E,rcos@ atr=R

From (1) we have

B
Z A;R'P(cos0) = —E,Rcos@ + Z Rl—JflPl(cosB)
= =0

A,R’:% forl+1

B
A1R=—E,,R+R—; forl=1
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From (2) we have (where k = €/¢,)

l+1)B
xz LA,R"1P,(cos0) = —E,cos6 — Z %Pl(cose)
=0 =0
)ART = B0 foriz1
KAy = —E, -2 forl=1

From these two equations and the other two equations
from previous page, we conclude that

A;=B;=0 forl#l

CLO/FO/TT
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Alternate method (Use eq. 4.30 and iterations)

The basic idea is that the external field Eo will induce
polarization in the dielectric sphere which in turn will
produce extra E field and so on.

E,=P,=E; =P, =E, =P, =

P, =€,xeE,

- 1 . Xe\ =
Ex __3€0Pa - <_?)E°

- — Xe\ —
Py = €ox.E1 = (€oXe) (_?e) E,

CTOZ/FO/TT
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3 -1
Ay=-—E, and B;='_R,
3E, 3E,
Vin = —ﬁrcoso = —ﬁz
Ein=E,+E{+Ep+ -
— = Xe\" = 1 —
Ein = [Z <_ _) E, = 5
X
n=0 3 1+ 8/3
N 3 N
NGRS

Since Yo +1 =k

Example 4.8 A charge q is at a distance d away from a
semi infinite and uniform linear dielectric material of
susceptibility y.. Find the surface bound charge, total
surface bond charge and force on the point charge.

The surface bound charge density is

abzﬁ'ﬁ:Pz:EoXeEz 0) )
E, is the z-component of E;, : |

E, has two components, (1) due to é - :
charge q, (2) due to gy, ie==ui

_ 1 q __ 1 qd
O 4me, (r2+d?) cos = 4neo (r24q2)>/*
?2) - ;T” (This is inside) why €,7?

CTOZ/FO/TT
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So the surface bound charge eq. (0) becomes

CTOZ/HO/TT

Xy __Xe  qd
2 41 (r2 + d?)3/2

)

o= — L Xe )99
b 2m\xe +2) (r? + d?)3/2

Compare with eq. 3.10

p[o1,] ST

1 q'd
% = o2 + 232

q' can be viewed as an image charge

b Xe
q 7.+2)9

For z > 0, the potential is given by:

’

q q
V2 +yr+(z—d)? [x2+y+ (z+d)?

0T

_ 1
" 4me,

€103/
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For z <0, (both charges q and g’ are at the same point (0,0,d)

_ 1 q+q
ame, | \[x2 + y2 + (z — d)?
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The force on the charge q due to the surface charge is

Example 4.8 (Alternate method)

We will use (1) image charges and (2) boundary conditions
to solve this problem here.

Boundary condition atz=0

Ein) = Eout) Din1i = Dout,y ™=  €Ei) = €,Eous,1
Forz>0

1 q q
— +
ATe, | X2 +y2 + (z—d)2 /a2 +y? + (z + d)?

Forz<0

Vour =

1 qu

4me, [x2 4 y2 + (z — d)?

Vin =

__laa, 1 (x )&
4me, (2d)? 4me, \ e + 2/ (2d)?
Let p? = x% + y?
£ = av
= ap g
From the b.c. for the E field parallel to the interface, atz= 0 ;
_ aVin —__ aVﬂut
ap ap
" r
Pq Pq i Pq

4
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—) ' =q+q O

From the b.c. for the normal D at the interface,

avin aVout

€9z T %oz

=) €' =6(q-q) (2
From (1) and (2)

WY 1 plotg L9 p arde)

€—€ 2¢
I o "_ ]
d ete, ! T = vel
,=_fo(1+Xe)_fo __ Xe q
€(1+x.) +¢€ 2+ xe

This is the same as derived on page 43.

Energy in dielectric systems

The amount of energy required to charge a capacitor is

dW =Vdq = %dq

CTOZ/FO/TT

- (94,19 1.
W_fdw_fcdq—zc—ZCV

Now if we have a dielectric filling inside the capacitor, the

capacitance increases,
C' =xC

PRI UL pPoLg OLIdRY § 03dey))

So the work required to charge a capacitor to the same
voltage V increases

1 1
W' ==CV:=x(>cV?
v (o)
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However, if we only want to charge the capacitor to the
same amount of charges, the voltage across the capacitor
actually drops

S
It
I
I
L0G/F0/T1

And the work done is less

)
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2

2
1 1 v 1
W ==CV'"?=2(xC) (—) =-W
2 K K

In Chapter 2, we derive that the energy stored in an
electrostatic field is

€
W=?°J-E2dr

To extend the previous equation to dielectric materials, we
re-write the equation as

0T

w efEZd
== T
2

€103/
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For linear dielectric materials, we assume
that ¢ is a constant and we can move it into the integral
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To verify this equation, we argue as follow:

Assume that we bring some free charges near a dielectric, the
work done is

AW = J’ (apg)vdr
Since V- D = p;
AW = f (V- AD)vdr

Integration by part, we have

AW = fv-(ABV)dr+fAB- (-VW)dt

AW=fA3-fdr

Now if the medium is a linear dielectric, then D=¢E

1 o 1
EA(D -E) = EA(eE )=¢€(AE)-E = (AD)-E

CTOZ/FO/TT
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W=EJ’D'EdT
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Force on dielectrics

Here we study the work done when a slab t ]

of linear dielectric material is pull out of a
capacitor. This is due to the fringing field
around the edge of the capacitor.

dw

dW=Fpu”'dx [> F:—H

Capacitance of a half-filled capacitor is,

wx w(l —x) wl wx
C=€07+€T=€7+T(EG_E)

Assuming that total charge on the capacitor is held
constant, the force required to pull the dielectric out is
dw  aw dC _1Q*dcC

Tdx  dC dx 2C%dx

From the last equation on previous page,

CTOZ/FO/TT

dC €y x.w
dx = d
Substituting back into the above equation
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1 € xeW
F=——-ypy20°2¢"
ZV d

Notice that we were able to determine the force without
knowing the details of the fringing field.




