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Outlines

1. Laplace’s equation

2. The Method of Images

3. Separation of Variables

4. Multipole Expansion
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Laplace’s Equation

As we mentioned earlier, in electrostatics the major task 
is to find ࡱ field for a given charge distribution.  This is 
basically a “source” problem, can be accomplished by 
Coulomb’s Law and principle of superposition.

ࡱ ൌ


ࣕ࣊
න
शෝ
श ࣋ ᇱ࢘ ′࣎ࢊ

If the field is too difficult to solve, we can always try to 
solve the potential

ࢂ ࢘ ൌ


ࣕ࣊
න

श
࣋ ᇱ࢘ ′࣎ࢊ
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In this chapter, we will concentrated on solving the 
electric potential as a boundary value problem.  We 
start out with Gauss’s law in differential form: 

ࢺ · ࡱ ൌ
࣋
ࣕ
							⟹ ࢂࢺ					 ൌ െ

࣋
ࣕ

In free space where ࣋ ൌ ,	 we have the Laplace’s 
equation.

સࢂ ൌ 

This type of problems are very common because it is 
rather easy to set up a boundary condition using a 
constant voltage power supply.
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Examples of boundary value problems

1. An infinite waveguide,

2. A charge near a grounded conducting plane,
3. A charge near a grounded conducting sphere,

4. A dipole. 
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Laplace’s equation in Cartesian coordinates

ࣔࢂ
࢞ࣔ


ࣔࢂ
࢟ࣔ


ࣔࢂ
ࢠࣔ

ൌ 

The solution to Laplace’s equation are the harmonic 
functions.  The typical method used to solve Laplace’s 
equation is the “separation of variables” technique.

ࢂ ,࢞ ,࢟ ࢠ ൌ ࢞ࢂ ࢞ · ሻ࢟ሺ࢟ࢂ · ሻࢠሺࢠࢂ
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For the 1D case, we have

ࢂࢊ
࢞ࢊ

ൌ 

And the solution can be

ࢂ ࢞ ൌ ࢞ ࢈

The above equation has two unknowns, so we will 
need two boundary conditions to solve this problem.  

For example: V(x1) and V(x2), or V(x1) and 
ሻ࢞ሺࢂࢊ

࢞ࢊ
, or 

V(x1) and 
ሻ࢞ሺࢂࢊ

࢞ࢊ
.

Is it possible to have the boundary conditions as 
ሻ࢞ሺࢂࢊ

࢞ࢊ
and 

ሻ࢞ሺࢂࢊ

࢞ࢊ
?
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One important thing here is the fact that the solution 
of Laplace’s equation does not have a “local” 
minimum. 

1. For any x,  ࢂ ࢞ ൌ ࢂ ࢇା࢞ ାࢂሺࢇି࢞ሻ


,  a      0 .

2. Laplace’s equation does not allow local minima or 
maxima.  All minima or maxima only occur at the 
boundary. 

3. These properties of the Laplace’s equations can be 
extended to 2D and 3D.
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Laplace’s equation in two dimension

ࣔࢂሺ࢞, ሻ࢟
࢞ࣔ


ࣔࢂሺ࢞, ሻ࢟
࢟ࣔ

ൌ 

Use separation of variables, we can write V(x, y) as

ࢂ ,࢞ ࢟ ൌ ሻ࢞ሺࢌ · ሻ࢟ሺࢍ

And substitute back into the Laplace equation 
above, we end up with

ࢍ ࢟ ·
ࣔࢌ ࢞
࢞ࣔ

 ࢌ ࢞ ·
ࣔࢍ ࢟
࢟ࣔ

ൌ 
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ሻ࢞ሺࢌ

·
ࣔࢌ ࢞
࢞ࣔ




ࢍ ࢟
·
ࣔࢍ ࢟
࢟ࣔ

ൌ 

In the above equation, since each term depends on one 
variable only and these two variables are different, so the 
only way that the above equation is correct is when each 
term equals to a constant.


ሻ࢞ሺࢌ

·
ࣔࢌ ࢞
࢞ࣔ

ൌ 


ሻ࢟ሺࢍ

·
ࣔࢍ ࢟
࢟ࣔ

ൌ െ
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The solutions to the 2D equation on previous page are 
harmonic functions.  They have the same properties as 
we noted for the 1D case, i.e.

1. No local maximum or minimum, all extrema occur 
at the boundary as shown in the figure below.

2. At a given point, the potential is equal to the 
average potential around that point. 

ࢂ ,࢞ ࢟ ൌ lim
→ࡾ

	


ࡾ࣊
ර ℓࢊࢂ
	

ࢋࢉ࢘ࢉ

The radius of the circle is R, and R is small.
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The same idea can be extended to 3D

1. No local maximum or minimum, all extrema occur 
at the boundary as shown in the equation below.

2. At a given point, the potential is equal to the 
average potential around that point. 

ࢂ ࡼ ൌ lim
→ࡾ

	


ࡾ࣊
ර ࢂ · ࢇࢊ

	

ࢋ࢘ࢋࢎ࢙
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PROOF

Potential on the surface of the sphere is given by

ࢂ ൌ


ࣕ࣊


श श ൌ ा  ࡾ െ ाࣂ࢙ࢉࡾ

ර


ࣕ࣊


ࡾ࣊

࣐ࢊࣂࢊࣂ࢙ࡾ

ा  ࡾ െ ाࣂ࢙ࢉࡾ

	

ࢋ࢘ࢋࢎ࢙

ൌ


ࡾ࣊
·
ࡾ

ࣕ
· න

ࣂࢊࣂ࢙

ࢠ  ࡾ െ ࣂ࢙ࢉࡾࢠ

࣊



ൌ


ࡾ࣊
ࡾ

ࣕ


ाࡾ

ा  ࡾ െ ा െ ࡾ ൌ


ࣕ࣊


ा

A charge q is located at (0, 0, z), show that the potential at the 
origin is given by the average potential on the surface of the sphere.
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ࢂ ࡼ ൌ


ࣕ࣊


ा

Problem 3.2 Earnshaw’s Theorem

Electrostatic force alone can not hold a charge in stable 
equilibrium, because electrostatic potential satisfied the 
Laplace’s equation, so it cannot have a local minimum.

The equation on page 13, turn out to be the 
potential at the origin due to the charge q at (0,0,z), 
or the potential at point z due to a charge q at the 
origin:
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Boundary conditions and uniqueness theorems

For Laplace’s equation, if a suitable set of boundary 
conditions are known, then the solution is uniquely defined.

But what are “suitable” boundary conditions?  In 1D, it is 
rather easy to see.  For 2D or 3D cases, the answer to the 
above questions is presented in the form of “Uniqueness 
theorems” 

First Uniqueness theorem

The solution to Laplace’s equation 
in a volume τ is uniquely 
determined if the potential V on the 
boundary surface S is specified.
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A hand-waving argument

Assume there are two different solutions, V1 and V2

for the same B.C.

Let V3 = V1 - V2 and we can see that V3 is also a solution 
of the Laplace’s equation,

સࢂ ൌ સ ࢂ െ ࢂ ൌ સࢂ െ સࢂ ൌ 

Since the B.C. of V3 is zero everywhere on the boundary 
and the solution of Laplace’s equation does not allow 
local minimum, therefore V3 is zero everywhere inside 
the boundary.
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PROOF

Start with the Green’s identity (eq. (c) in Problem 1.61).

න ࢍࢺࢌ  ࢌࢺ · ࢍࢺ ࣎ࢊ ൌ ර ࢍࢺࢌ · ࢇࢊ

Let U=V1-V2, and f = U and g =U, it is clear that U = 0 at 
the boundary and સࢁ ൌ 	ܑ܍܌ܑܛܖ	܍ܐܜ	܍ܕܝܔܗܞ. So we 
end up with

න ࢁࢺࢁ  ࢁࢺ · ࢁࢺ ࣎ࢊ ൌ ර ࢁࢺࢁ · ࢇࢊ

	

ࡿ

	

ࢂ

0 0

ࢁࢺ ൌ 						܍ܚ܍ܐܟܡܚ܍ܞ܍

U = constant, everywhere

Since U=0 at boundary, so U=0 everywhere 
inside the boundary.
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The second Uniqueness Theorem

In a volume ठ, surrounded by conductors and 
containing a specified charge density ρ, the electric field 
is uniquely determined if the total charge on each 
conductor is given.

Assume there are two 
different E fields satisfied the 
same B.C.

ࢺ · ࡱ ൌ
࣋

ࣕ
and ࢺ · ࡱ ൌ

࣋

ࣕ

Now let ࡱ ൌ ࡱ െ ࡱ

ࢺ · ࡱ ൌ 						܌ܖ܉												රࡱ · ࢇࢊ ൌ 

Now let V3 be the potential that is associated with E3.
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ࡱ ൌ െસࢂ

Next we will use the product rule,

સ · ࡱࢂ ൌ ࢂ સ · ࡱ  ࡱ · સࢂ ൌ െ ࡱ 

0

∮ સ · ࡱࢂ ࣎ࢊ ൌ ∮ ࡱࢂ · ࢇࢊ
	
ࡿ ൌ െ ࡱ 	

ठ ࢊ
	
ठ τ

0

න ࡱ ࣎ࢊ ൌ 

	

ठ

ࡱ ൌ Since ࡱ  is always >0
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The third Uniqueness Theorem

If the charge density ρ is given and either V or ࣔࢂ ⁄ࣔ is 
given at the boundary, then the ࡱ field is uniquely 
determined.

Suppose Let U = V1 – V2, and ࡱ ൌ െસࢂ and ࡱ ൌ െસࢂ

It is clear that સࢁ ൌ  everywhere and ࣔࢁ ⁄ࣔ ൌ  at the 
boundary.  Let’s use the Green’s identity on page 17.

න ࢁસࢁ  સࢁ · સࢁ
	

ठ
࣎ࢊ ൌ ර ࢁસࢁ · ࢇࢊ

	

ࡿ

 સࢁ ࣎ࢊ ൌ 
	
ठ સࢁ ൌ  U = const.

V1 = V2 + C,             ࡱ ൌ ࡱ
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The method of images

When a charge is brought near an 
infinite grounded conducting plane as 
shown on the right, the electric field will 
be modified by the grounded conductor.  
The charge will also induce a surface 
charge distribution even though the 
conductor is grounded.

This is simply a “boundary value” problem.  We need to 
find a charge distribution that can “create” the same 
boundary condition.  For a point charge near the infinitely 
large grounded conducting plane, an image charge on the 
other side will do the trick.
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ࢂ ,࢞ ,࢟ ࢠ ൌ


ࣕ࣊



࢞  ࢟  ࢠ െ ࢊ 


െ

࢞  ࢟  ࢠ  ࢊ 

The electric field is given by

ࡱ ൌ െસࢂ ൌ െ
ࢂࣔ
࢞ࣔ

ෝ࢞ െ
ࢂࣔ
࢟ࣔ

ෝ࢟ െ
ࢂࣔ
ࢠࣔ

ොࢠ

Surface charge density

࣌ ,࢞ ,࢟  ൌ െ

࣊

െሺ െ ሻࢊ

࢞  ࢟  ࢊ
 െ

െሺ  ሻࢊ

࢞  ࢟  ࢊ


ୄࡱ ൌ
࣌
ࣕ
ൌ െ

ࢂࣔ
ࣔ ࣌ ൌ െࣕ

ࢂࣔ
ࣔ Z = 0
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࣌ ,࢞ ,࢟  ൌ

࣊

െࢊ

࢞  ࢟  ࢊ


The total charge on the conducting plane is

ܳ ൌඵߪ · ݎ݀ߠ݀ݎ ൌඵ
െ݀ݍ · ݎ݀ݎ · ߠ݀

ߨ2 ଶݎ  ݀ଶ
ଷ

ଶగ



ൌ െ݀ݍ
െ1

ଶݎ  ݀ଶ
ൌ െݍ

r =0

r = ∞
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Force and Energy

Force between the charge and its image charge.

ࡲ ൌ െ


ࣕ࣊



ࢊ  

and

ࢃ ൌ െ


ࣕ࣊



ࢊ
(Only in the space 
where q is located)

The above equations can be calculated through 
integration over the whole surface charge. 

ࡲ ൌ නࡲࢊ and ࢃ ൌ නࡲ · ࢊ

ࢊ

ஶ
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A charge near a grounded conducting sphere

When we put two charges q1 and q2 a distance 2d apart, 
if q1 = -q2, we know that at the mid-point there is a plane 
that has a zero potential.
Now if   ≠ , but they do have opposite charges, 
what will be the shape of the zero potential surface??
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The potentials due to q and q’ can be written as follow:

ࢂ ࢘ ൌ


ࣕ࣊


࢘ െ ࢘




ࣕ࣊

ᇱ

࢘ െ ᇱ࢘

where ࢘ is the position of q and ࢘ᇱ is the position of ᇱ

Now let ࢘ ൌ ࢂ and since ,ࡾ ࡾ ൌ ,܍ܟ	܌ܖ܍	ܘܝ	ܐܜܑܟ



ࡾ െ ࢘


ᇱ

ࡾ െ ᇱ࢘
ൌ 

1. Choose ࢘ᇱ to be in the same direction as ࢘, and let 
࢘ ൌ 	ෝࢇ࢘ and   ࢘ᇱ ൌ ෝࢇᇱ࢘ (point P1)
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2.  Let ࢘ᇱ ൌ ࡾ

࢘
and ࡾ ൌ ො࢘ࡾ



ࡾ െ ෝࢇ࢘


ᇱ

ࡾ െ ࡾ
࢘

ෝࢇ
ൌ



ࡾ െ ෝࢇ࢘


ᇱ

ࡾ
࢘

ො࢘࢘ െ ෝࢇࡾ
ൌ 

3.  Let ᇱ ൌ െ ࡾ

࢘



ො࢘ࡾ െ ෝࢇ࢘

െ


ො࢘࢘ െ ෝࢇࡾ
ൌ 
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The following expression is always true because of the 
Law of cosine.

ෝࢇࢇ െ ࢈࢈ ൌ ෝࢇ࢈ െ ࢈ࢇ

Therefore, for a charge q near a grounded sphere, we 

can always find an image charge with ᇱ ൌ െ ࡾ

࢘
 which ,

located at ࢘ᇱ ൌ ࡾ

࢘
,   that will simulate the grounded 

sphere.
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Similar method can be used to find the potential and 
field of a charge near a conducting sphere with a 
constant potential of V, or a charge inside a grounded 
conducting shell.

q

V

q

10/13/2016
C

h
apter 3 P

oten
tials

30

In Cartesian coordinates, we have

ࢂ ,࢞ ,࢟ ࢠ ൌ


ࣕ࣊



࢞  ࢟  ࢠ െ ࢊ 
െ

ࢊࡾ

࢞  ࢟  ࢠ െ ࡾ
ࢊ



In spherical coordinates

ࢂ ,࢘ ࣘ,ࣂ ൌ


ࣕ࣊



࢘  ࢊ െ ࣂ࢙ࢉࢊ࢘
െ

ࢊࡾ

࢘  ࡾ
ࢊ



െ ࡾ࢘


ࢊ ࣂ࢙ࢉ

ࡱ field and the surface charge density can be found 
from the potential V.
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Separation of Variables

• Cartesian Coordinates

• Spherical Coordinates

• Cylindrical Coordinates
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Separation of variables (Cartesian Coordinates)

B.C.  (1) V=0 at y=0
(2) V=0,  for y = ࢇ
(3)  V=V(y), x=0
(4)  V(x) = 0, as x →∞

ࣔࢂ
࢞ࣔ


ࣔࢂ
࢟ࣔ

ൌ 

Let V(x,y)=X(x)· ࢅ ࢟ ,		we end up with


ሻ࢞ሺࢄ

·
ࣔࢄ ࢞
࢞ࣔ

ൌ 


ሻ࢟ሺࢅ
·
ࣔࢅ ࢟
࢟ࣔ

ൌ െ
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ࢄ ࢞ ൌ ࢞ࢋ  ࢞ିࢋ

Y ࢟ ൌ ࢙࢟  ࢙࢟ࢉࡰ

ࢂ ,࢞ ࢟ ൌ ࢞ࢋ  ࢞ିࢋ ࢙࢟  ࢙࢟ࢉࡰ

(1) When y=0,  V(x, 0) = 0.           so D = 0.
(2) When y = a, V(x, a) = 0,           sin(ka)=0 

ka = n, n is integer

(3) When x  ∞, V = 0,         A = 0.

So we end up with

ࢂ ,࢞ ࢟ ൌ ିࢋ′
࣊
ࢇ ࢞ · ሺ࢙

࣊
ࢇ
ሻ࢟ ᇱ) ൌ ሻ
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Since n can be any integer, we re-write the solution 
as

ࢂ ,࢞ ࢟ ൌ ࢋ
ି
࣊
ࢇ ሺ	࢙࢞

࣊
ࢇ
ሻ࢟

ஶ

ୀ

Now we match the last boundary condition to 
find the coefficients Cn.

ࢂ , ࢟ ൌ ࢙
࣊
ࢇ
࢟

ஶ

ୀ

 ·
ࢇ


ൌ නࢂሺ, ሻ࢟ · ࢙
࣊
ࢇ
࢟ ࢟ࢊ

ࢇ



Times both sides by ࢙ ࢟࣊ᇱ

ࢇ
and integrate from 0 to a

10/13/2016
C

h
apter 3 P

oten
tials

35

For example, if V(0,y)= Vo

 ൌ
ࢂ
ࢇ

න࢙
࣊
ࢇ
࢟

ࢇ



࢟ࢊ

ൌ	
ࢂ
ࢇ

·
ࢇ
࣊

 െ ࢙ࢉ ࣊ ൌ ቐ
, ܖ܍ܞ܍	ܛܑ	ܖ	ܚܗ					
ܗ܄
ૈܖ

, ܌܌ܗ	ܛܑ	ܖ	ܚܗ

ࢂ ,࢞ ࢟ ൌ
ࢂ
࣊




ିࢋ

࣊
ࢇ ࢙࢞

࣊
ࢇ
࢟

ୀ,,
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A set of function ࢌ ࢞ ܛܑ "܍ܜ܍ܔܘܕܗ܋"	܍܊	ܗܜ	܌ܑ܉ܛ if any 
function g(x) can be expressed by

ࢍ ࢞ ൌ 	ࢌሺ࢞ሻ

ஶ

ୀ

Orthogonal

ࢌ ࢞ ࢌ ࢞ ࢞ࢊ ൌ  if n ≠ m

Orthonormal

නࢌ ࢞ · ࢌ ࢞ ࢞ࢊ ൌ ቊ
, 	ܖ								 ് 
, 								 ൌ 

A “complete” set of function has the following properties



10/13/2016

7

10/13/2016
C

h
apter 3 P

oten
tials

37

Example 3.4 (Modified)

B.C.
1. V=0 at ࢟ ൌ ࢇ
2. V=0 at ࢟ ൌ െࢇ
3. V = Vo at ࢞ ൌ ࢈
4. V=Vo at ࢞ ൌ െ࢈

Similar to example 3.4, but choice of origin is different.

ࣔࢂ
࢞ࣔ


ࣔࢂ
࢟ࣔ

ൌ 


ሻ࢞ሺࢄ

ሻ࢞ሺࢄࢊ
࢞ࢊ

ൌ 


ሻ࢟ሺࢅ
ሻ࢟ሺࢅࢊ
࢟ࢊ

ൌ െ

let ࢂ ,࢞ ࢟ ൌ ሻ࢞ሺࢄ · ሻ࢟ሺࢅ

x

y

b-b

a

-a
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ࢄ ࢞ ൌ ࢞ࢋ  ࢞ିࢋ

ࢅ ࢟ ൌ  · ࢙ࢉ ࢟  ࡰ · ሻ࢟ሺ࢙

From B.C. 1. and 2. we have: 

ࢅ ࢇ ൌ  · ࢇ࢙ࢉ  ࡰ · ࢇ࢙ ൌ 

ࢅ െࢇ ൌ  · ࢇ࢙ࢉ െ ࢇ࢙ࡰ ൌ 

From above we can see that

or

D = 0, C ≠ 0, and cos(ka) = 0  ൌ
࣊
ࢇ

m is odd

C = 0, D ≠ 0, and sin(ka) = 0  ൌ
࣊
ࢇ

m is integer
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Since there is symmetry in the y direction, so the 
function Y(y) needs to be an even function, therefore 

C ≠ 0, D = 0, and  ൌ ࣊

ࢇ
, m is odd

In the x-direction, X(x) is also an even function, since 
both ࢞ࢋ and ࢞ିࢋ are not even or odd, we re-construct 
the solution for X(x) as follow, we find B=0 as follow:

A general solution will be

ࢂ ,࢞ ࢟ ൌ  ࢎ࢙ࢉ
࣊
ࢇ

࢞ ࢙ࢉ
࣊
ࢇ

࢟

ஶ

ࢊࢊୀ

ࢄ ࢞ ൌ ࢎ࢙ࢉ	 ࢞  ሻ࢞ሺࢎ࢙ = Acosh(kx)
0
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To find the coefficients Cm, we need to use the B.C. 3 
and 4 on page 37.

ࢂ ,࢞ ࢟ ൌ
ࢂ
࣊




 · ࢎ࢙ࢉ ࢈࣊
ࢇ

ࢎ࢙ࢉ
࣊
ࢇ

࢞ ࢙ࢉ
࣊
ࢇ

࢟

ஶ

ࢊࢊୀ

We will leave this as an exercise.  Please compare this 
result with Example 3.4
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Spherical coordibates

The Laplace’s equation in spherical coordinates is giving below:


࢘

ࣔ
࢘ࣔ

࢘
ࢂࣔ
࢘ࣔ




ࣂ࢙࢘
ࣔ
ࣂࣔ

ࣂ࢙
ࢂࣔ
ࣂࣔ




ࣂ࢙࢘
ࣔࢂ
࣐ࣔ ൌ 

Let ࢂ ,࢘ ࣐,ࣂ ൌ ࡾ ࢘ · દ ࣂ ·  ࣐ 	, substitute into the 
above equation, then divided by V ,࢘ ,ࣂ ࣐


ሻ࢘ሺࡾ࢘

ࣔ
࢘ࣔ

࢘
ࡾࣔ
࢘ࣔ




ࣂ࢙࢘ · દሺࣂሻ
ࣔ
ࣂࣔ

ࣂ࢙
ࣔદ
ࣂࣔ




ࣂ࢙࢘ · ሺ࣐ሻ
ࣔ
࣐ࣔ ൌ 

The above equation ൈ ࣂ࢙࢘
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ࣂ࢙
ሻ࢘ሺࡾ

ࣔ
࢘ࣔ

࢘
ሻ࢘ሺࡾࣔ
࢘ࣔ


ࣂ࢙
દሺࣂሻ

ࣔ
ࣂࣔ

ࣂ࢙
ࣔદ
ࣂࣔ




ሺ࣐ሻ
ࣔ
࣐ࣔ ൌ 

Since the first two terms are independent of φ, so the last 
term has to equal to a constant, and let it equal to െ.

 ࣐ ൌ ࣐ାࢋ  ࣐ିࢋ

Substitute eq. (1) into the equation at the top, we end up with:

ࣂ࢙
ሻ࢘ሺࡾ

ࣔ
࢘ࣔ

࢘
ሻ࢘ሺࡾࣔ
࢘ࣔ


ࣂ࢙
દሺࣂሻ

ࣔ
ࣂࣔ

ࣂ࢙
ࣔદሺࣂሻ
ࣂࣔ

െ ൌ 


ሺ࣐ሻ

ࣔ
࣐ࣔ ൌ െ

The solution of eq. (1) is giving by

(1)
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Re-arrange


ሻ࢘ሺࡾ

ࣔ
࢘ࣔ

࢘
ࡾࣔ
࢘ࣔ




દሺࣂሻ · ࣂ࢙
ࣔ
ࣂࣔ

ࣂ࢙
ࣔદ
ࣂࣔ

െ


ࣂ࢙
ൌ 

The 2nd & 3rd terms are independent of r, let them be െሺ  ሻ, after 
re-arrange:


ࣂ࢙

ࣔ
ࣂࣔ

ࣂ࢙
ࣔદ
ࣂࣔ

     െ


ࣂ࢙
દ ࣂ ൌ 

ࣔ
࢘ࣔ

࢘
ࡾࣔ
࢘ࣔ

െ     ࡾ ࢘ ൌ 

ࡾ ࢘ ൌ ࢘  ାሻሺି࢘

The solution of this radial equation can be written as

The 1st term becomes
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Assume no azimuthal dependence, m = 0, the angular part 
becomes 


ࣂ࢙

ࢊ
ࣂࢊ

ࣂ࢙
દࢊ
ࣂࢊ

     દ ൌ 

Next, change of variables, we let ࣂ࢙ࢉ ൌ  then ,࢞
ሻࣂ࢙ࢉሺࢊ ൌ ࢞ࢊ ൌ െࣂࢊࣂ࢙

ࢊ
࢞ࢊ

 െ ࢞
ሻ࢞દሺࢊ
࢞ࢊ

     દሺ࢞ሻ ൌ 

The solutions of the above equation are Legendre 
polynomials of order l.

દ ࢞ ൌ ሻ࢞ሺࡼ
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ࡼ ࢞ ൌ 
ࡼ ࢞ ൌ ࢞

ࡼ ࢞ ൌ


࢞ െ 

ࡼ ࢞ ൌ


࢞ െ ࢞

ࡼ ࢞ ൌ

ૡ
࢞ െ ࢞  

In general, ࡼሺ࢞ሻ is defined by Rodrigues formula:

ࡼ ࢞ ൌ


 · !
ࢊ
࢞ࢊ



࢞ െ 


For m ≠ 0, 

ࡼ
 ࢞ ൌ െ   െ ࢞

/ ࢊ

࢞ࢊ
ሻ࢞ሺࡼ
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The Legendre polynomial of order l is an l-th
order polynomial.

Po(0) = 1, P1(0)=0, P2(0)= -1/2, P3(0)= 0, ….

ࡼ  ൌ  for all l

The Legendre polynomials is a complete 
orthogonal set, namely any function can be 
expressed using Legendre polynomial.  The 
solution of Laplace equation with azimuthal 
symmetry can be expressed as 

ࢂ ,࢘ ࣂ ൌ ࢘  ି࢘ ା ሻࣂ࢙ࢉሺࡼ

ஶ

ୀ
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The orthogonal properties of ࡼ ࢞ ܡ܊	ܖ܍ܞܑ	ܛܑ

නܲᇲሺݔሻ ܲሺݔሻ · ݔ݀

ଵ

ିଵ

ൌ
2

2݈  1
ᇲߜ

From Rodrigues formula, we can derive the following 
recurrence formula.

ାࡼࢊ
࢞ࢊ

െ
ିࡼࢊ
࢞ࢊ

െ    ࡼ ൌ 

   ାࡼ െ    ࡼ࢞  ିࡼ ൌ 

ାࡼࢊ
࢞ࢊ

െ ࢞
ࡼࢊ
࢞ࢊ

െ    ࡼ ൌ 

࢞ െ 
ࡼࢊ
࢞ࢊ

െ ࡼ࢞  ିࡼ ൌ 
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Example 3.6, 3.7 & 3.8
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Laplace’s equation in cylindrical Coordinates

In cylindrical coordinates, the Laplace’s 
equation is given by

સࢂ ൌ

࢘
ࣔ
࢘ࣔ

࢘
ࢂࣔ
࢘ࣔ



࢘
ࣔࢂ
ࣔࣘ 

ࣔࢂ
ࢠࣔ

ൌ 

Let ࢂ ,࣐,࢘ ࢠ ൌ ሻ࢘ሺࡾ · ሺ࣐ሻ ·  ሻ, and substitute in theࢠሺࢆ
above equation


ࡾ࢘

ࣔ
࢘ࣔ

࢘
ሻ࢘ሺࡾࣔ
࢘ࣔ




࢘
ࣔሺ࣐ሻ
࣐ࣔ 


ሻࢠሺࢆ

ࣔࢆ
ࢠࣔ

ൌ 
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Let the third term equal to a constant


ሻࢠሺࢆ

ࣔࢆሺࢠሻ
ࢠࣔ

ൌ  ࢆ ࢠ ൌ ࢠࢋ  ࢠିࢋ

Now go back to the Laplace’s equation, we have


ࡾ࢘

ࣔ
࢘ࣔ

࢘
ࡾࣔ
࢘ࣔ




࢘
ࣔ
࣐ࣔ   ൌ 

Times ࢘, we end up with

࢘
ࡾ
ࣔ
࢘ࣔ

࢘
ࡾࣔ
࢘ࣔ

 ࢘ 


ሺ࣐ሻ
ࣔ
࣐ࣔ ൌ 
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Let 




ࣔ

࣐ࣔ
ൌ െ, and 

 ࣐ ൌ ࣐ࢋ  ࣐ିࢋࡰ

The radial component part becomes

࢘
ࡾ
ࣔ
࢘ࣔ

࢘
ࡾࣔ
࢘ࣔ

 ࢘ െ ൌ 

࢘
ࣔࡾ
࢘ࣔ

 ࢘
ࡾࣔ
࢘ࣔ

 ࢘ െ ࡾ ൌ 

श ࣔ
ࡾ

ࣔश  श
ࡾࣔ
ࣔश

 श െ ࡾ ൌ 

The solution of the above equation is a Bessel function 
of order m.

Change variable, let श ൌ ࢘
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If the boundary condition involves an infinite cylinder or 
wire, such that there is no z-dependence, then k = 0 and 
the radial function reduces to 

࢘
ሻ࢘ሺࡾࢊ
࢘ࢊ

 ࢘
ሻ࢘ሺࡾࢊ
࢘ࢊ

െࡾ ࢘ ൌ 

The solutions to the above equation can be polynomials 
of r.

ࡾ ࢘ ൌ ࢘  ି࢘

Combine with the φ-dependence function, we have:

ࢂ ࣐,࢘ ൌ ሻ࢘ሺ     ࢘  ି࢘ ࣐࢙ࡰ࣐࢙ࢉ

ஶ

ୀ
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Multipole expansion

Here we will explain (a) what is multipoles and (b) show 
the potential and field of a dipole and a quadrupole.  We 
will also explain (c) what is multipole expansion and 
why we are interested in multipole expansion.

Electric dipole

A charge q is located at y = d/2, and
A charge –q is located at y = -d/2.

ࢂ ࡼ ൌ


ࣕ࣊


ା࢘


െ
ି࢘

Assume that ࢘ ≫ ࢊ
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ା࢘ ൌ ࢘ 
ࢊ




െ ࣂ࢙ࢉࢊ࢘ ≅ ࢘  െ
ࢊ
࢘
ࣂ࢙ࢉ

ି࢘ ൌ ࢘ 
ࢊ




െ ࣊ሺ࢙ࢉࢊ࢘ െ ሻࣂ ≅ ࢘  
ࢊ
࢘
ࣂ࢙ࢉ

Assume that ࢘ ≫ ࢊ

Substitute into equation on page 53

ሻࡼሺࢂ ൎ


ࣕ࣊

ࢊ
࢘

ࣂ࢙ࢉ

േ࢘ ൎ ࢘  ∓
ࢊ
࢘

ࣂ࢙ࢉ

ା࢘

െ

ି࢘

≅
ࢊ
࢘
ࣂ࢙ࢉ
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Define dipole moment ࡼ ൌ ࢊ where ,ࢊ is a displacement 
vector from –q to q.

ࢂ ࡼ ൌ


ࣕ࣊

ࡼ · ො࢘
࢘

The E-field of a dipole is given by

࢘ࡱ ൌ െ
ࢂࣔ
࢘ࣔ

ൌ


ࣕ࣊

ࡼ
࢘

ࣂ࢙ࢉ

ࣂࡱ ൌ െ

࢘
ࢂࣔ
ࣂࣔ

ൌ


ࣕ࣊

ࡼ
࢘
ࣂ࢙

࣐ࡱ ൌ െ


ࣂ࢙࢘
ࢂࣔ
࣐ࣔ

ൌ 
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Ideal dipole
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Physical dipole
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Linear quadrupole

ࢂ ࢘ ൌ


ࣕ࣊


ା࢘

െ

࢘


ି࢘

ൌ


࢘ࣕ࣊
࢘
ା࢘


࢘
ି࢘

െ 

ା࢘ ൌ ࢘  
ࢊ
࢘



െ
ࢊ
࢘
ࣂ࢙ࢉ

Let ࢿ ൌ ࢊ

࢘


െ ࢊ

࢘
ࣂ࢙ࢉ

࢘
ା࢘

ൌ   ࢿ ି/ ൌ  െ


ࢿ 


ૡ
ࢿ െ




ࢿ ⋯
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ൌ  െ


ࢊ

࢘
െ
ࢊ
࢘
ࣂ࢙ࢉ 


ૡ

ࢊ
࢘



െ
ࢊ
࢘
ࣂ࢙ࢉ



െ⋯

≅  
ࢊ
࢘
ࣂ࢙ࢉ െ




ࢊ
࢘





ૡ


ࢊ
࢘



ࣂ࢙ࢉ ⋯

ൌ  
ࢊ
࢘
ࣂ࢙ࢉ 

ࢊ
࢘

 

ࣂ࢙ࢉ െ



⋯

Similarly

࢘
ି࢘

≅  െ
ࢊ
࢘
ࣂ࢙ࢉ 

ࢊ
࢘

 

ࣂ࢙ࢉ െ



⋯

ࢂ ࢘ ൎ 

ࣕ࣊

ࢊ

࢘
࢙ࢉିࣂ


+…
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The monopole term cancels out and the dipole term also cancels out.  
The potential is proportional to ି࢘

࢘ࡱ ൌ െ
ࢂࣔ
࢘ࣔ

ൌ
ࢊ

࢘ࣕ࣊
࢙ࢉࣂ



ࣂࡱ ൌ െ

࢘
ࢂࣔ
ࣂࣔ

ൌ
ࢊ

࢘ࣕ࣊
· ࣂ࢙ࣂ࢙ࢉ

We noticed that:
Multipoles Potential

monopole
~	

࢘
· 

ሻࣂ࢙ࢉሺࡼ

dipole
~	


࢘
· ࣂ࢙ࢉ

ሻࣂ࢙ࢉሺࡼ

quadrupole
~	


࢘
·


ࣂ࢙ࢉ െ




ሻࣂ࢙ࢉሺࡼ

Octopole
~	


࢘
·


ࣂ࢙ࢉ െ



ࣂ࢙ࢉ

ሻࣂ࢙ࢉሺࡼ

The electric field of a quadrupole is given by
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Multipole Expansion

So far we have learned that a point charge (monopole) 
generates a potential that is ~ ⁄࢘ and +q and –q separated 
by a small distance creates a dipole potential that is ~

ൗ࢘
And if we put two dipole together, we create a quadrupole
potential that is ~	 ൗ࢘ and so on ….

Next we will explain what is multipole expansion and why 
we want to use this particular technique.  We want to 
show that an arbitrary charge distribution can be 
expressed in terms of multipole expansion.

ࢂ ࢘ ൌ


ࣕ࣊
න
ᇱሻ࢘ሺ࣋
श

′࣎ࢊ श ൌ ࢘ െ and′࢘
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श ൌ ࢘ െ ′࢘
റं

റݎ

श′ݎ ൌ ࢘  ′࢘ െ ࢘࢘ᇱࣂ࢙ࢉ


श
ൌ

࢘



  ′࢘
࢘



െ ࢘′࢘ ࣂ࢙ࢉ

Let ࢘ᇱ

࢘


െ  ᇲ࢘

࢘
ࣂ࢙ࢉ ൌ 	ࢿ ····· 	 ሺሻ


श
ൌ

࢘
ሺ  ሻି/ࢿ


श
ൌ

࢘

 െ


ࢿ 


ૡ
ࢿ െ




ࢿ ⋯
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श
ൌ

࢘
 െ




ᇱ࢘

࢘



െ 
ᇱ࢘

࢘
ࣂ࢙ࢉ 


ૡ

ᇱ࢘

࢘

 ᇱ࢘

࢘
െ ࣂ࢙ࢉ



⋯

Re-arrange


श
ൌ

࢘
 

′࢘
࢘

ࣂ࢙ࢉ 
′࢘
࢘

 

ࣂ࢙ࢉ െ





′࢘
࢘

 

ࣂ࢙ࢉ െ



ࣂ࢙ࢉ


श
ൌ

࢘


ᇱ࢘

࢘



ሻࣂ࢙ࢉሺࡼ

ஶ

ୀ

ࢂ ࢘ ൌ


ࣕ࣊



ା࢘

න ᇱ࢘ ࡼ ࣂ࢙ࢉ ࣋ ᇱ࢘ ′࣎ࢊ

ஶ

ୀ

Substitute eq. (1) into the last equation 
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Let’s expand the first few terms, 

ࢂ ൌ


ࣕ࣊


࢘
න࣋ ᇱ࢘ ′࣎ࢊ

For n = 1

ࢂ ൌ


ࣕ࣊


࢘
න࢘ᇱࡼ ࣂ࢙ࢉ ࣋ ᇱ࢘ ′࣎ࢊ

For n = 2

ࢂ ൌ


ࣕ࣊


࢘
න ᇱ࢘ ࡼ ࣂ࢙ࢉ ࣋ ᇱ࢘ ′࣎ࢊ

For n = 3

ࢂ ൌ


ࣕ࣊


࢘
න ᇱ࢘ ࡼ ࣂ࢙ࢉ ࣋ ᇱ࢘ ′࣎ࢊ

For n = 0
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So we have shown that an arbitrary charge distribution can be 
expressed in terms of monopole term, dipole term, quadrupole term, 
and so on.

In general, the strength of monopole > strength of dipole > strength 
of quadrupole > strength of octopole

The dipole term can be written in terms of vectors


ࣕ࣊


࢘
න࢘ᇱ࣋ࣂ࢙ࢉ ᇱ࢘ ′࣎ࢊ

Define ࡼ as dipole moment,

ࡼ ൌ න࢘′ · ࣋ ᇱ࢘ ′࣎ࢊ


ࣕ࣊


࢘
ො࢘ · න ࣋ᇱ࢘ ᇱ࢘ ′࣎ࢊ

ࡿ  ࢋࢊࡿ  ࢛࢘ࢊࢇ࢛ࡿ  ࢚ࢉࡿ
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ࢋࢊࢂ ൌ


ࣕ࣊

ො࢘ · ࡼ
࢘

The concept of “moment” comes from mathematics, 
ࣆ is the nth moment of a distribution function f(x)

ࣆ ൌ න࢞ · ࢌ ࢞ ࢞ࢊ

In physics, we define moment of inertia (2nd moment) 
as

ࡵ ൌ න ᇱ࢘ ࣋ ᇱ࢘ ′࣎ࢊ

So we can see that dipole moment is a 1st order 
moment and quadrupole moment is a 2nd order 
moment, and so on.
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The electric field of a dipole

The electric field of a dipole at the origin derived on slide 
55 can be written in the vector form as follow:

ࢊࡱ ,࢘ ࣂ ൌ


࢘ࣕ࣊
࢘ࣂ࢙ࢉො  ࣂࣂ࢙

The above equation can be written in the following form

 = (r)ࢊࡱ

ࣕ࣊



࢘
  · ො࢘ ො࢘ െ 
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Physical dipole and ideal dipole

On slide 53, we start out with an expression that 
describes a physical dipole, we assume that r >> d, we 
end up with an exact expression of an ideal dipole on 
slide 55.  The ideal dipole expression was re-derived 
again on slide 65 using multipole expansion.  The 
difference between a physical dipole and an ideal dipole 
is shown below.
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The integrals on slide 62 are for various moments, as we 
can see that moments will depend on the choice of the 
origin, except the “monopole moment” which is the net 
charge. If the net charge is equal to zero, then the next 
leading term will be independent of the choice of the 
origin.

So it is meaningless to talk about the dipole moment if 
(a) net charge is not zero, and (b) we don’t know where is 
the origin.
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Origin of coordinates in multipole expansion

On slide 64, we showed the first few terms of the multipole 
expansion.  We can see that the monopole term is just the 
sum of all charges, so it is independent of the coordinates.  
This is just the charge conservation law.  All other higher 
order terms, such as dipole, quadrupole, or octopole
moments will depend on the choice of the origin of the 
coordinate systems.

In addition, we have a theorem stating that the leading non-
zero term of the multipole expansion will always be 
independent of the choice of the origin of the coordinates.
So if the net charge is equal to zero, then the dipole moment 
of this charge distribution will be independent of the choice 
of the origin of the coordinate systems.  This is 
demonstrated on the next page:

10/13/2016
C

h
apter 3 P

oten
tials

71

Assume we have two coordinate 
systems, the xy system and the ࢞ഥ࢟ഥ
system and 

തᇱ࢘ ൌ ᇱ࢘ െ ࢇ

So the dipole moment in the ࢟࢞
system is given by

ഥ ൌ න࢘ᇱഥ࣋ ᇱ࢘ ′࣎ࢊ ൌ න ᇱ࢘ െ ࢇ ࣋ ᇱ࢘ ′࣎ࢊ

ൌ න࢘ᇱ࣋ ᇱ࢘ ᇱ࣎ࢊ െ ࣋නࢇ ᇱ࢘ ᇱ࣎ࢊ ൌ  െ ࢇࡽ

If Q = 0, then ഥ ൌ 


