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The electric field

The most important concepts in this chapter are:

• Principle of superposition
• Coulomb’s law 

Superposition theorem

The interaction between any two charges is 
completely unaffected by the presence of 
other charges.  

Or we can say that if q1 produces a field of 1

and q2 produces another field , then the 
field produced by q1 + q2 will be + .
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Superposition theorem may seem “obvious”, but however 
it is not trivial.  It originates from the linearity of the field 
equations. For example, in “non-linear optics”, the super 
position theorem does not hold any true any more.

In general, the topics in E&M can be summarized as: if we 
know there are a number of charges, q1, q2, … , what is the 
net force they exert on a test charge Q?

In the most general case, each of these charges can have 
velocity and acceleration and the problem in general is 
quite difficult to solve, which we will deal with in chapter 
9.

Here we only deal with electrostatics.
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Coulomb’s Law

Here 	is the separation vector & 

= 8.85 is the permitivity of the free space.

We can remove the test charge Q from the above eq. and 
define a “field”, 
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The is a field which satisfied the principle 
of superposition.  So the total at point P 
due to n charges is given by:

Continuous charge distributions

′

	

′

	

′
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Problem 2.3
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· and 

Field lines

These are electric field lines.  They always originated 
from the positive charges and terminated at negative 
charges.  The density of the lines indicates the magnitude 
of the electric field.
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Flux

The flux of through a surface S, is defined as 

≡ ·
	

Flux is a measure of the “number of field lines” 
passing through a surface S.  Examples: 
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For a point charge at the origin, the flux of through a 
sphere of radius r that contains the origin will be

· ·

This integration is relatively easy because of 
symmetry.  If the closed surface has an 
arbitrary shape, will the flux be the same?
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Now if we have n charges inside a closed 
surface, the net field on the surface is given by 
the principle of superposition:

Substitute into the previous equation, we end 
up with

·

	

Through divergence theorem, we can show that

· Gauss’s Law
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We can also derive the previous equation without using 
the divergence theorem;

′

· · ′

= ′

=

= 				
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Applications of Gauss’s Law

Gauss’s Law is a powerful method to find the electric field of certain 
charge distributions when we can take advantages of symmetry. 

Field inside a uniformly charged solid sphere

·
	

E·
·
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Field near an infinite line charge

·

· ·
·
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E field near a uniform 2D surface charge 

·

·
·
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The Curl of 

From Maxwell Equation,

For electrostatic, there is no time-dependent terms, 
therefore the curl of a static is zero everywhere.

= 0

The above result can be obtained directly assuming that 
the field produced by a point charge at the origin.

So static E field is a curl-less field.
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= 
·

·

+ 

=  0

All central fields are curl-less fields.
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We can also calculate the line integral of the Coulomb 
field as follow:

· 	

For a closed path,

For arbitrary charge distribution, ⋯

If Ei are statics fields

·



10/5/2015

4

9/03/15
C

h
apter 2 E

lectrostatics

19

What is the consequence of a Curl-free vector field?

• It is not an arbitrary field, you can not write down 
an arbitrary function and call it an electric field.

• It can be expressed as a gradient of a scalar field,

where V is a scalar field called potential.  For a vector 
field that we can associate a “potential” to the field, the 
field is a conservative field.
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The line integral of field is independent of the path, we 
can choose a reference point, such that the line integral 
from a reference to a point is given by: 

· ·

· ·

= 	 · ·
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From previous equation, we can see that

The concept of “path independence” is very important 
here.  It allows us to define a potential and it gives us a 
“conservative field”.

V is called potential and it is a scalar function.  If we 
know potential V, we can find the field by taking the 
gradient of the potential. There are two advantages of 
using V to find .

• V is a scalar, but 	 	 	
• The equations for V is 2nd order DE, while equations 

for 	are 1st order DE.
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The field is a vector, it seems to contain much more 
information than the potential, which is scalar function. 
In reality, there are a lot of redundant information 
contained in the field, because the static electric field is a 
curl-free field.

The choice of reference point in the potential is arbitrary.  
So only the potential difference is important. WE can 
always add a constant to a potential and it will not affect 
the electric field at all.

Typically when we have a finite charge distribution, we 
choose ∞ as our reference point where the potential 
is zero.
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Example 7 and Problem 21 will be 
shown in class
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Poisson’s  and Laplace’s Equations

Since we can write down the electric field as the negative 
of the gradient of a potential:

The fundamental equation for becomes

· 									⟹									

For , we have a Laplace’s eq.
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So for V, we have only one 2nd order DE to solve, but if we 
approach the problem using electric field , we end up 
with two equations:

· , 						

In general, there are two major ways to solve the 
potential problems in electrostatic:

(a) Solve as a source problem using integration,
(b) Solve as a boundary value problem, using boundary 

conditions. 

In the following, we will start out using method (a).  
Method (b) will be discussed in Chapter 3.
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The potential of a localized charge distribution

We want to calculate the potential if given a fixed charge 
distribution, :

For a point charge, we know that 

· ·

= · ∞

If the source is not at the origin,

·
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For a continuous 3D charge distribution, 

′

For a surface charge distribution

′

For a line charge distribution

′
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Example 8 and Problem 25
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Summary: Electrostatic boundary conditions

Relationship between (a) charge density, (b) potential, 
and (c) electric field.
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From example 2-7, we can see that if we cross a surface 
charge density , the potential is continuous , but the E 
field has a dis-continuity across the boundary.  

Now we want to explore the usage of “Gauss’s Law” to 
solve electrostatic problem.

Apply Gauss’s Law

·
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·

	

·

	

From symmetry argument, the magnitude of the field 
above and below should be the same, but the directions 
are different.

The normal component of the electric field has a 
“discontinuity” across the charged boundary.

9/03/15
C

h
apter 2 E

lectrostatics

32

Tangential component of the E field.

Now we turn our attention to the 
tangential component of E field near a 
surface charge distribution.

·

= ∥ ⋅ ∥ ⋅

So the parallel component of the E field is continuous 
across the surface charges.  In general, we can write the 
boundary condition as follow:

=

∥ ∥
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Potential

The potential is continuous across the boundary because

·

Since ,

Times the normal unit vector on both sides:
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Work and energy in electrostatics

Assume that we want to move a charge Q from point B to 
point A.  What is the “work” done?
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The force needed to overcome the Coulomb force is given 
by, 

The work done by this force from B to A is 

· ·

= Q ·

= Q· ∆
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So the work done is equal to the amount of charge times 
the “potential difference” between those two points.
Now if we want to move a charge from infinity to a point 
P, then 

∞

If we assume that V(∞) = 0 as our reference point

·

where V(P) is the potential at point P due to all 
charges.
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Now let’s find out the energy of a charge collection.

1. Put the first charge at position 
No work done.

2. Put the 2nd charge at position 
work done equal to 

= ·

3.   Put a third charge into the potential created by q1 and q2.

=
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The energy required to add 4th charge into the system is

=  

For N charges

= ∑ ∑ ∑
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For continuous charge distribution,

· ·
	

We can express the charge density in terms of the divergence 
of the E field.

· Integration by part

	 · ·

·

	

Assume finite charge 
distribution
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Example 8 and Problem 2.32(b)
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Comments on electrostatic energy

1.  Difference between Equation 2.42 and equation 2.45

								 .

·

	

	

							 .

In 2.42, the energy is stored in the interaction between 
charges and it does not contain self-energy.  In 2.45, the 
energy is stored in the field and it contains self-energy, so 
it is always positive.
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Consider two point charges at 	 	

	 	 	 	 	 . . 	 	 	 	

1
32

	

	
16

·
·

The third term above is the interaction term, we can show 
that

The first two terms are self-energy.
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2. Energy can be viewed as stored in the charge 
interaction with potential, or it can be viewed as 
stored in the electric field.

3. Superposition theorem does not work for the 
energy because the energy term contains a 
quadratic term

Let

But
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Conductors

A conductor has unlimited free electrons moving around.  
It does not take any energy to move these electrons.  So 
the charge distribution inside a conductor will be such 
that there is no E field at all.

1. , 	 	 ,
2. ρ = 0, inside a conductor,
3. If there is any net charges, then they will reside on the 

surface,
4. V = constant through out a conductor,
5. 	is perpendicular to the surface just outside a 

conductor.
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Induced Charges

A positive charge near a conductor will attract negative 
charges on the conductor to the near side and will repel 
positive charges to the far side.  Because of this charge 
re-distribution, the conductor will be attractive to the 
charge. From action-reaction, we can say that a charge 
will be attractive to a conductor even if it is neutral.
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Even if we deal with dielectric 
which does not have free 
electron, we still observe the 
same phenomenon. This is due 
to the fact that even though 
there is no free charges, the 
atoms can be polarized.
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Example 9 and problem 2.36

To shield a charge inside a conductor, it is necessary to 
ground the conductor.
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Surface charge and the force on a conductor

From Gauss’s Law

·

Since the field inside a conductor is zero, so

=	

Since , we can re-write above equation in 

terms of potential

or
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For a surface charge in an electric field, it will experience 
a force.  The force on this charge density is given by

We can view the E field as 
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Capacitor

Suppose we have two parallel conducting plates and we 
put +Q on one plate and –Q on the other plate as shown

As we can see that there is a 
potential difference between the 
two plates and there is an 
electric field between the two 
plates.  We are interested in 
finding the relationship 
between the E field, the 
potential difference, and the 
amount of charge on the plate. 
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1. The potential difference is proportional to the 
between the plates.

·

2.  From the Gauss’s law, we can see that the charge is 
proportional to the electric field between the plates.

E 
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3.  The amount of charge on the plate is also proportional to 
the potential difference.  We define a quantity called 
capacitance as the ratio of charge to the electric potential 
difference.  The capacitance is the amount of charge a 
“device” can hold per unit voltage.

	

For a parallel plate capacitor, the capacitance is 
given by 

This is a very general expression can be 
used in any geometry.

This is a very specific expression, used 
for parallel plate capacitor only.
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Example 11
For a parallel plate capacitor, the E field inside is given by 

The potential difference between the two plates is

· ·
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To charge up a capacitor, we need to do “work”

Let Q=CV, 

From eq. 2.43


