

- Cross-product of two vectors

$$
\begin{gathered}
\vec{A} \times \vec{B}=A B \sin \theta \widehat{n} \\
\text { where } \vec{n} \perp \vec{A}, \quad \text { and } \quad \widehat{n} \perp \vec{B}
\end{gathered}
$$

In a strict sense, if \vec{A} and \vec{B} are vectors, the cross product of two vectors is a pseudo-vector.

A vector is defined as a mathematical quantity
Cross-product follows distributive rule but not the commutative rule.

$$
\vec{A} \times(\vec{B}+\vec{C})=\vec{A} \times \vec{B}+\vec{A} \times \vec{C}
$$

Distribution rule

But

1. Vector Algebra

- Addition of two vectors
$\vec{A}+\vec{B}=\vec{B}+\vec{A}$
Communicative
$\vec{A}+(\vec{B}+\vec{C})=(\vec{A}+\vec{B})+\vec{C}$ Associative
$\vec{A}-\vec{B}=\vec{A}+(-\vec{B})$
Definition
- Multiplication by a scalar $a(\vec{A}+\vec{B})=a \vec{A}+a \vec{B} \quad$ Distribution
- Dot product of two vectors
$\vec{A} \cdot \vec{B}=A B \cos \theta, \quad \theta$ is angle between $\vec{A} \& \vec{B}$
$\vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}$
$\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$
which transform like a position vector:

$$
\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \widehat{\mathbf{k}}
$$

$$
\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}
$$

so

$$
\vec{A} \times \vec{B} \neq \vec{B} \times \vec{A}
$$

$$
\left.\begin{array}{c}
\vec{A}+\vec{B}=\left(A_{x}+B_{x}\right) \widehat{x}+\left(A_{y}+B_{y}\right) \vec{y}+\left(A_{z}+B_{z}\right) \hat{z} \\
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \\
\vec{A} \times \vec{B}=\left(A_{x} \widehat{x}+A_{y} \hat{y}+A_{z} \hat{z}\right) \times\left(B_{x} \widehat{x}+B_{y} \hat{y}+B_{z} \hat{z}\right) \\
=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{x}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{y}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathbf{z}}
\end{array}\right] \begin{gathered}
=\left|\begin{array}{ccc}
\widehat{x} & \widehat{y} & \hat{\mathbf{z}} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
\end{gathered}
$$

where \hat{x}, \hat{y}, and \hat{z} are unit vectors which are perpendicular to each other. A_{x}, A_{y}, and A_{z} are components of \vec{A} in the $\mathrm{x}-\mathrm{y}$ - and z -
direction. to set up Cartesian coordinates and work with the components of a vector.

$$
\vec{A}=A_{x} \widehat{x}+A_{y} \widehat{y}+A_{z} \widehat{z}
$$

Vector triple products

$$
\vec{A} \cdot(\vec{B} \times \vec{C})=\vec{B} \cdot(\vec{C} \times \vec{A})=\vec{C} \cdot(\vec{A} \times \vec{B})
$$

$$
\vec{A} \cdot(\vec{B} \times \vec{C})=\left|\begin{array}{lll}
A_{x} & A_{y} & \boldsymbol{A}_{z} \\
B_{x} & B_{y} & B_{z} \\
\boldsymbol{C}_{x} & \boldsymbol{C}_{y} & \boldsymbol{C}_{z}
\end{array}\right|
$$

$$
=-\left|\begin{array}{lll}
B_{x} & B_{y} & B_{z} \\
A_{x} & A_{y} & A_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|
$$

Position, displacement, and separation vectors

The location of a point (x, y, z) in Cartesian coordinate as shown below can be defined as a vector from $(0,0,0)$ to (x, y, z) is given by

$$
\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \widehat{k}
$$

where
$|\vec{r}|=r=\sqrt{x^{2}+y^{2}+z^{2}}$
and

$$
\hat{r}=\frac{\vec{r}}{r}=\frac{x \hat{\imath}+y \hat{\jmath}+z \widehat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

$$
\begin{gathered}
\vec{A} \cdot(\vec{B} \times \vec{C})=(\vec{A} \times \vec{B}) \cdot \vec{C} \\
\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B}) \\
(\vec{A} \times \vec{B}) \times \vec{C}=-\vec{A}(\vec{B} \cdot \vec{C})+\vec{B}(\vec{A} \cdot \vec{C})
\end{gathered}
$$

All these vector products can be verified using the vector component method. It is usually a tedious process, but not a difficult process.

Infinitesimal displacement vector is given by

$$
\widehat{d \ell}=d x \widehat{x}+d y \widehat{y}+d z \hat{z}
$$

In general, when a charge is not at the origin, say at ($\mathbf{x}^{\prime}, \mathbf{y}^{\prime}, \mathrm{z}^{\prime}$), to find the \vec{E} field produced by this charge at another position, (x, y, z), we use the following, which is called a separation vector,

$$
\begin{gathered}
\overrightarrow{\boldsymbol{r}}=\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}^{\prime}} \\
\overrightarrow{\boldsymbol{r}}=\left(x-x^{\prime}\right) \hat{x}+\left(\boldsymbol{y}-\boldsymbol{y}^{\prime}\right) \widehat{y}+\left(z-z^{\prime}\right) \hat{\mathbf{z}} \\
|\overrightarrow{\boldsymbol{r}}|=\boldsymbol{r}=\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}^{\prime}}\right| \\
\hat{\boldsymbol{r}}=\frac{\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}^{\prime}}}{\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}^{\prime}}\right|}
\end{gathered}
$$

A more rigorous definition of vector starts with the concept that the space is (a) isotopic, so no preferred direction, (b) homogeneous, so no preferred location. A physical quantity such as displacement or force, should be independent of the coordinate system we choose.

Let $\vec{A}=\overrightarrow{\boldsymbol{O P}}$

$$
\begin{aligned}
\vec{A} & =A_{y} \widehat{y}+A_{z} \hat{z} \\
\overrightarrow{A^{\prime}} & =A_{y}^{\prime} \widehat{y^{\prime}}+A_{z}^{\prime} \widehat{z^{\prime}}
\end{aligned}
$$

FIGURE 1.15

FIGURE 1.15

$$
\begin{aligned}
A_{y}^{\prime} & =A \cdot \cos (\theta-\varphi) \\
& =A \cdot(\cos \theta \cdot \cos \varphi+\sin \theta \cdot \sin \varphi) \\
& =A_{y} \cos \varphi+A_{z} \sin \varphi \\
A_{z}^{\prime} & =A \cdot \sin (\theta-\varphi) \\
& =A \cdot(\sin \theta \cdot \cos \varphi-\cos \theta \cdot \sin \varphi) \\
& =-A_{y} \cdot \sin \varphi+A_{z} \cdot \cos \varphi
\end{aligned}
$$

The relationship between $A_{y}^{\prime}, A_{z}^{\prime}$ and A_{y}, A_{z} can be expressed below:

$$
\begin{gathered}
A_{y}^{\prime}=\cos \varphi A_{y}+\sin \varphi A_{z} \\
A_{z}^{\prime}=-\sin \varphi A_{y}+\cos \varphi A_{z}
\end{gathered}
$$

The above equations can be combined into one matrix notation;

$$
\binom{A_{y}^{\prime}}{A_{z}^{\prime}}=\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right)\binom{A_{y}}{A_{z}}
$$

This is a rotation about the x -axis. For rotation about an arbitrary axis, the transformation law has the form:

$$
\left(\begin{array}{l}
\boldsymbol{A}_{x}^{\prime} \\
\boldsymbol{A}_{y}^{\prime} \\
\boldsymbol{A}_{z}^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
\boldsymbol{R}_{x x} & \boldsymbol{R}_{x y} & \boldsymbol{R}_{x z} \\
\boldsymbol{R}_{y x} & \boldsymbol{R}_{y y} & \boldsymbol{R}_{y z} \\
\boldsymbol{R}_{z x} & \boldsymbol{R}_{z y} & \boldsymbol{R}_{z z}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{A}_{x} \\
\boldsymbol{A}_{y} \\
\boldsymbol{A}_{z}
\end{array}\right)
$$

The rotation matrix above describes the rotation transformation of a vector from one coordinate to another coordinate, it can be written more compactly as

$$
A_{i}^{\prime}=\sum_{j=1}^{3} R_{i j} A_{j}
$$

This is how a displacement vector transformed. In general we define a vector as any set of three components that transform in the same manner as a displacement vector when we rotate the coordinates.

Similar idea can be extended to tensor; namely for a second rank tensor in 3D, the rotation through an arbitrary angle can be expressed as:

$$
\boldsymbol{T}_{i j}^{\prime}=\sum_{k=1}^{3} \sum_{l=1}^{3} \boldsymbol{R}_{i k} \boldsymbol{R}_{j l} \boldsymbol{T}_{k l}
$$

Differential vector calculus

In 1D, the infinitesimal change of a function $f(x), d f$ is given by

$$
d f=\left(\frac{d f(x)}{d x}\right) d x=\left(\frac{\partial f(x)}{\partial x}\right) d x
$$

Where the derivative ${ }^{d f(x)} / d x$ is the same as the partial derivative $\partial f(x) / \partial x$. The derivative is the slope of the function $f(x)$.

For a function with two variables, $f(x, y)$, the infinitesimal change of the function, $d f$, is given by:

$$
d f \equiv\left(\frac{\partial f}{\partial x}\right)_{y} d x+\left(\frac{\partial f}{\partial y}\right)_{x} d y
$$

Note that when we take partial derivative with respect to x, we need to hold the other variable y as a constant. This concept can extent to n-dimension.
In 3D with 3 variables, we have

$$
d f \equiv\left(\frac{\partial f}{\partial x}\right) d x+\left(\frac{\partial f}{\partial y}\right) d y+\left(\frac{\partial f}{\partial z}\right) d z
$$

This expression looks a lot like a vector dot product!

$$
d f \equiv\left(\frac{\partial f}{\partial x} \hat{\imath}+\frac{\partial f}{\partial y} \hat{\jmath}+\frac{\partial f}{\partial z} \widehat{k}\right) \cdot(d x \hat{\imath}+d y \hat{\jmath}+d z \widehat{k})
$$

$$
d f \equiv \nabla f \cdot \stackrel{\rightharpoonup}{d l}
$$

$$
\nabla f=\left(\frac{\partial f}{\partial x}\right) \hat{\imath}+\left(\frac{\partial f}{\partial y}\right) \hat{\jmath}+\left(\frac{\partial f}{\partial z}\right) \widehat{k}
$$

∇f is the gradient of the function $f(x, y, z) . \nabla f$ is a vector field and pointing at the direction of maximum slope.

In general, the function $f(x, y, z)$ is an arbitrary function, however, $\boldsymbol{\nabla} \boldsymbol{f}$ has some special properties it is not arbitrary any more.

Problem 1.11(b)

Find the gradient of the function, $f(x, y, z)=x^{2} y^{3} z^{4}$

$$
\begin{gathered}
\nabla f=\frac{\partial f}{\partial x} \widehat{x}+\frac{\partial f}{\partial y} \widehat{y}+\frac{\partial f}{\partial z} \widehat{z} \\
=2 x y^{3} z^{4} \widehat{x}+3 x^{2} y^{2} z^{4} \hat{y}+4 x^{2} y^{3} z^{3} \widehat{z}
\end{gathered}
$$

Example 1.3
Find the gradient of $r=\sqrt{x^{2}+y^{2}+z^{2}}$.

$$
\begin{aligned}
\nabla r & =\frac{\partial r}{\partial x} \widehat{x}+\frac{\partial r}{\partial y} \widehat{y}+\frac{\partial r}{\partial z} \hat{z} \\
& =\frac{x \widehat{x}+y \widehat{y}+z \hat{z}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{\stackrel{r}{r}}{r}=\hat{r}
\end{aligned}
$$

Divergence of a vector field

$$
\nabla \cdot \vec{V}=\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial z}
$$

The divergence of a vector field is a measure of how the vector field "spread out from a given point".

$$
\vec{V}=\frac{-x \hat{\imath}}{\sqrt[3]{x^{2}+y^{2}}}+\frac{-y \hat{\jmath}}{\sqrt[3]{x^{2}+y^{2}}}
$$

$$
\vec{v}=-y \hat{\imath}+x \hat{\jmath}
$$

The operator "del" ∇

∇ is a vector, and it is also an operator.

$$
\nabla \equiv \hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\widehat{k} \frac{\partial}{\partial z}
$$

As an operator, it always operates on a function. As a vector, it can operates on a scalar, or a vector.

$$
\begin{array}{lll}
\nabla f(x, y, z) & \cdots & \text { Gradient of } f(x, y, z) \\
\nabla \cdot \vec{V}(x, y, z) & - & \text { Divergent of } \vec{V} \\
\nabla \times \vec{V}(x, y, z) & - & \text { Curl of } \vec{V}
\end{array}
$$

$$
\begin{gathered}
\nabla \cdot\left[\frac{-x \hat{\imath}}{\sqrt[3]{x^{2}+y^{2}}}+\frac{-y \hat{\jmath}}{\sqrt[3]{x^{2}+y^{2}}}\right]=\frac{\partial}{\partial x}\left[\frac{-x}{\sqrt[3]{x^{2}+y^{2}}}\right]+\frac{\partial}{\partial y}\left[\frac{-y}{\sqrt[3]{x^{2}+y^{2}}}\right] \\
=\left[\frac{-1}{\sqrt[3]{x^{2}+y^{2}}}+\frac{3 x^{2}}{\sqrt[5]{x^{2}+y^{2}}}\right]+\left[\frac{-1}{\sqrt[3]{x^{2}+y^{2}}}+\frac{3 y^{2}}{\sqrt[5]{x^{2}+y^{2}}}\right] \\
\nabla \cdot[-y \hat{\imath}+x \hat{\jmath}]=\frac{\partial}{\partial x}[-y]+\frac{\partial}{\partial y}[-x]=0 \\
\end{gathered}
$$

The Curl

The Curl of a vector field is defined as

Example (This is not the same as example on page 21)
$\vec{V}=-z \hat{\imath}+x \hat{\jmath}, \nabla \cdot \vec{V}=0$, and $\nabla \times \vec{V}$ is calculated below.

$$
\nabla \times \vec{V}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \widehat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-z & x & 0
\end{array}\right|=-\hat{\jmath}+\widehat{k}
$$

$$
(\nabla \times \vec{V}) \cdot \vec{V}=-x
$$

The Curl measures how a vector field "curl" around a point. Curl is a vector operator, but in general, $\underline{\nabla} \times \vec{V}$ not necessarily perpendicular to \vec{V}

Vector Product Rules

Page 20-21, there are many rules. It is useful to work out some of the expressions in details yourself at home.

Second derivatives

(a) Divergence of a gradient

$$
\begin{aligned}
\nabla \cdot(\nabla f)= & {\left[\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\widehat{k} \frac{\partial}{\partial z}\right] \cdot\left[\frac{\partial f}{\partial x} \hat{\imath}+\frac{\partial f}{\partial y} \hat{\jmath}+\frac{\partial f}{\partial z} \widehat{k}\right] } \\
= & \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=\nabla^{2} f
\end{aligned}
$$

This is called the Laplacian of $f(x, y, z)$. This is a very common operator, which we encounter in mathematical physics quite often.
(b) Curl of a gradient (Always equals to zero)

$$
\begin{gathered}
\nabla \times \nabla f=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \widehat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z}
\end{array}\right| \\
=\left(\frac{\partial^{2} f}{\partial y \partial z}-\frac{\partial^{2} f}{\partial z \partial y}\right) \hat{\imath}+\left(\frac{\partial^{2} f}{\partial z \partial x}-\frac{\partial^{2} f}{\partial x \partial z}\right) \hat{\jmath}+\left(\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}\right) \widehat{k} \\
=0
\end{gathered}
$$

(c) Gradient of a divergence (Seldom used)

$$
\begin{gathered}
\nabla(\nabla \cdot \vec{A})=\left[\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right]\left[\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right] \\
=\left(\frac{\partial^{2} A_{x}}{\partial x^{2}}+\frac{\partial^{2} A_{y}}{\partial x \partial y}+\frac{\partial^{2} A_{z}}{\partial x \partial z}\right) \hat{\imath}+\left(\frac{\partial^{2} A_{x}}{\partial y \partial x}+\frac{\partial^{2} A_{y}}{\partial y^{2}}+\frac{\partial^{2} A_{z}}{\partial y \partial z}\right) \hat{\jmath} \\
\quad+\left(\frac{\partial^{2} A_{x}}{\partial z \partial x}+\frac{\partial^{2} A_{y}}{\partial z \partial y}+\frac{\partial^{2} A_{z}}{\partial z^{2}}\right) \hat{k} \\
\text { Note: } \nabla(\nabla \cdot \overrightarrow{\boldsymbol{A}}) \neq(\nabla \cdot \nabla) \overrightarrow{\boldsymbol{A}}
\end{gathered}
$$

(d) The divergence of a Curl

$($ Always $=0)$

$$
\begin{gathered}
\nabla \cdot(\nabla \times \vec{A})=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \\
{\left[\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{\imath}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{\jmath}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{k}\right]} \\
=\left[\frac{\partial^{2} A_{z}}{\partial x \partial y}-\frac{\partial^{2} A_{y}}{\partial x \partial z}\right]+\left[\frac{\partial^{2} A_{x}}{\partial y \partial z}-\frac{\partial^{2} A_{z}}{\partial y \partial x}\right]+\left[\frac{\partial^{2} A_{y}}{\partial z \partial x}-\frac{\partial^{2} A_{x}}{\partial z \partial y}\right]=0
\end{gathered}
$$

(e) The Curl of a Curl

$$
\begin{gathered}
\nabla \times(\nabla \times \vec{A})=\nabla(\nabla \cdot \vec{A})-\nabla^{2} \vec{A} \\
\nabla \times(\nabla \times \vec{A})=\left[\left(\frac{\partial^{2} A_{y}}{\partial x \partial y}-\frac{\partial^{2} A_{x}}{\partial y^{2}}\right)-\left(\frac{\partial^{2} A_{x}}{\partial z^{2}}-\frac{\partial^{2} A_{z}}{\partial x \partial z}\right)\right] \hat{\imath} \\
+\left[\left(\frac{\partial^{2} A_{z}}{\partial y \partial z}-\frac{\partial^{2} A_{y}}{\partial z^{2}}\right)-\left(\frac{\partial^{2} A_{y}}{\partial x^{2}}-\frac{\partial^{2} A_{x}}{\partial x \partial y}\right)\right] \hat{J} \\
+\left[\left(\frac{\partial^{2} A_{x}}{\partial x \partial z}-\frac{\partial^{2} A_{z}}{\partial x^{2}}\right)-\left(\frac{\partial^{2} A_{z}}{\partial y^{2}}-\frac{\partial^{2} A_{y}}{\partial y \partial z}\right)\right] \widehat{k}
\end{gathered}
$$

1-3 Integral calculus

Let's start with a 1D function, $F(x)$, which is the derivative of another function, $f(x)$

$$
F(x)=\frac{d f(x)}{d x}
$$

Then
$\int_{a}^{b} F(x) d x=\int_{a}^{b} \frac{d f(x)}{d x} d x=\int_{a}^{b} d f(x)=f(b)-f(a)$.
The result of the integral only depends on the end point of $f(x)$, because in 1 D , the boundary of an arbitrary curve is the end point.

In general, when we are in a 3D space, the line integral of an arbitrary function $\overrightarrow{\boldsymbol{V}}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$

$$
\int_{a}^{b} \vec{V}(x, y, z) \cdot \overrightarrow{d l}
$$

will depend on the path taken.
However, if we have a specific function, namely

$$
\vec{F}(x, y, z)=\nabla f(x, y, z)
$$

Then the line integral of a gradient is independent of the path taken.

$$
\int_{a}^{b}(\nabla f) \cdot \vec{d}=f(b)-f(a)
$$

The fundamental theorem of Gradients

This is called the "Fundamental theorem for gradients", and

$$
\oint(\nabla f) \cdot \overrightarrow{d l}=0
$$

In physics, we said that if we can associate a potential to a field (force), then the field (force) is conservative. Namely the work done by the field does not depend on the path.

The fundamental theorem of divergence.

The divergence theorem states that:

$$
\int_{V}(\nabla \cdot \vec{V}) d \tau=\oint_{S} \vec{V} \cdot d \vec{a}
$$

The divergence theorem is very similar to the gradient theorem, namely, the integral (volume) of a derivative (divergence) of a function is equal to the function evaluated at the boundary (surface).

It is also called Gauss's theorem or Green's theorem.

The fundamental theorem of Curls

If the surface is a closed surface,

$$
\oint_{S}(\nabla \times \vec{V}) \cdot \overrightarrow{d a}=0
$$

The Stoke's theorem states that the surface integral of a Curl is only depended on the boundary condition, namely the line integral of the "edge" of the surface and does not depend on the surface we choose, as long as the boundaries are the same.

For example:

From the previous page, if we combine equations (1) and (3), (namely let $\vec{V}=\nabla f$)

$$
\begin{gathered}
\int[\nabla \times(\nabla f)] \cdot \overrightarrow{d a}=0 \quad \text { For any surface } \\
\nabla \times(\nabla f)=0
\end{gathered}
$$

If we combine (2) and (3),

$$
\begin{gathered}
\int_{V} \nabla \cdot(\nabla \times \vec{V}) d \tau=\oint(\nabla \times \vec{V}) \cdot \overrightarrow{d a}=0 \\
\nabla \cdot(\nabla \times \vec{V})=0
\end{gathered}
$$

Integration by parts

From product rule for the derivatives

$$
\frac{d}{d x}(f g)=f\left(\frac{d g}{d x}\right)+g\left(\frac{d f}{d x}\right)
$$

We can see that by integrating both sides, we end up with

$$
\int_{a}^{b} d(f g)=\int_{a}^{b} f\left(\frac{d g}{d x}\right) d x+\int_{a}^{b} g\left(\frac{d f}{d x}\right) d x
$$

This can be extended to vector product rule such as

$$
\nabla \cdot(f \stackrel{\rightharpoonup}{A})=f(\nabla \cdot A)+\vec{A} \cdot(\nabla f)
$$

Relations among the fundamental theorems
(1) Gradient Theorem:

$$
\int_{\text {Line }}(\nabla f) \cdot \overrightarrow{d l}=f(b)-f(a)
$$

(2) Divergence theorem:

$$
\int_{\tau}(\nabla \cdot \vec{V}) d \tau=\oint_{A} \vec{V} \cdot d \vec{a}
$$

(3) Stoke's theorem:

$$
\int_{S}(\nabla \times \vec{V}) \cdot \overrightarrow{d a}=\oint_{\text {Line }} \vec{V} \cdot \overrightarrow{d \vec{l}}
$$

These are boundary value problems, relating the integral of a "derivative" of the function to the evaluation of the function at its boundary.

Note: In general, we can start with an arbitrary vector field, $\vec{V}(x, y, z)$, or an arbitrary function, $f(x, y, z)$.

However, ∇f or $\nabla \times \vec{V}$ are not arbitrary function any more, namely;
∇f is a Curl-free vector field,
and
$\nabla \times \vec{A}$ is a divergence-free field.

Integrating over a volume, we end up with

$$
\int \nabla \cdot(f \vec{A}) d \tau=\int f(\nabla \cdot \vec{A}) d \tau+\int \vec{A} \cdot(\nabla f) d \tau
$$

Re-arrange and applying the divergent theorem

$$
\oint f \vec{A} \cdot d \vec{a}=\int f(\nabla \cdot \vec{A}) d \tau+\int \vec{A} \cdot(\nabla f) d \tau
$$

Curvilinear Coordinates

(a)Cartesian Coordinates

(b)Spherical Coordinates
(c)Cylindrical coordinates

These coordinates can be shown on the next two pages

Cylindrical Coordinates
(s, φ, \mathbf{z})
They are all orthogonal curvilinear coordinates. The three directions of each coordinate satisfies the cyclic relationship.

Cartesian coordinates

Cartesian. $\quad d \mathbf{l}=d x \hat{\mathbf{x}}+d y \hat{\mathbf{y}}+d z \hat{\mathbf{z}} ; \quad d \tau=d x d y d z$
Gradient: $\quad \nabla t=\frac{\partial t}{\partial x} \hat{\mathbf{x}}+\frac{\partial t}{\partial y} \hat{\mathbf{y}}+\frac{\partial t}{\partial z} \hat{\mathbf{z}}$
Divergence: $\boldsymbol{\nabla} \cdot \mathbf{v}=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}$
Curl: $\quad \nabla \times \mathbf{v}=\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right) \hat{\mathbf{x}}+\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right) \hat{\mathbf{y}}+\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right) \hat{\mathbf{z}}$
Laplacian: $\quad \nabla^{2} t=\frac{\partial^{2} t}{\partial x^{2}}+\frac{\partial^{2} t}{\partial y^{2}}+\frac{\partial^{2} t}{\partial z^{2}}$

Cylindrical Coordinates

Cylindrical: $\mathrm{d} \vec{l}=d s \hat{s}+s d \varphi \widehat{\varphi}+d z \hat{z}, \quad d \tau=s d s d \varphi d z$
Gradient:

$$
\nabla T=\frac{\partial T}{\partial s} \hat{\mathbf{s}}+\frac{1}{s} \frac{\partial T}{\partial \phi} \hat{\boldsymbol{\phi}}+\frac{\partial T}{\partial z} \hat{\mathbf{z}} .
$$

Divergence:

$$
\nabla \cdot \mathbf{v}=\frac{1}{s} \frac{\partial}{\partial s}\left(s v_{s}\right)+\frac{1}{s} \frac{\partial v_{\phi}}{\partial \phi}+\frac{\partial v_{z}}{\partial z} .
$$

Curl:

$$
\nabla \times \mathbf{v}=\left(\frac{1}{s} \frac{\partial v_{z}}{\partial \phi}-\frac{\partial v_{\phi}}{\partial z}\right) \hat{\mathbf{s}}+\left(\frac{\partial v_{s}}{\partial z}-\frac{\partial v_{z}}{\partial s}\right) \hat{\boldsymbol{\phi}}+\frac{1}{s}\left[\frac{\partial}{\partial s}\left(s v_{\phi}\right)-\frac{\partial v_{s}}{\partial \phi}\right] \hat{\mathbf{z}} .
$$

Laplacian:

$$
\nabla^{2} T=\frac{1}{s} \frac{\partial}{\partial s}\left(s \frac{\partial T}{\partial s}\right)+\frac{1}{s^{2}} \frac{\partial^{2} T}{\partial \phi^{2}}+\frac{\partial^{2} T}{\partial z^{2}} .
$$

These complicated formulism can be understood through orthogonal curvilinear coordinates.

Gradient in an arbitrary orthogonal curvilinear system
Assume we have a function $t(u, v, w)$, where u, v, w are orthogonal, the change of t from $t(u, v, w)$ to
$t(u+d u, v+d v, w+d w)$ is given by

$$
d t=\frac{\partial t}{\partial u} d u+\frac{\partial t}{\partial v} d v+\frac{\partial t}{\partial w} d w
$$

This can be written as a dot product

$$
d t=\nabla t \cdot d \vec{l}=(\nabla t)_{u} f d u+(\nabla t)_{v} g d v+(\nabla t)_{w} h d w
$$

where

$$
d \vec{l}=f d u \widehat{u}+g d v \widehat{v}+h d w \widehat{w}
$$

and

$$
(\nabla t)_{u} \equiv \frac{1}{f} \frac{\partial t}{\partial u}, \quad(\nabla t)_{v} \equiv \frac{1}{g} \frac{\partial t}{\partial v}, \quad(\nabla t)_{w} \equiv \frac{1}{h} \frac{\partial t}{\partial w}
$$

Similarly

$\boldsymbol{\nabla} \cdot \mathbf{A} \equiv \frac{1}{f g h}\left[\frac{\partial}{\partial u}\left(g h A_{u}\right)+\frac{\partial}{\partial v}\left(f h A_{v}\right)+\frac{\partial}{\partial w}\left(f g A_{w}\right)\right]$,
$\nabla \times \mathbf{A} \equiv \frac{1}{g h}\left[\frac{\partial}{\partial v}\left(h A_{w}\right)-\frac{\partial}{\partial w}\left(g A_{v}\right)\right] \hat{\mathbf{u}}+\frac{1}{f h}\left[\frac{\partial}{\partial w}\left(f A_{w}\right)-\frac{\partial}{\partial u}\left(h A_{w}\right)\right] \hat{\mathbf{v}}$
$+\frac{1}{f g}\left[\frac{\partial}{\partial u}\left(g A_{v}\right)-\frac{\partial}{\partial v}\left(f A_{u}\right)\right] \hat{\mathbf{w}}$,
$\nabla^{2} t \equiv \frac{1}{f g h}\left[\frac{\partial}{\partial u}\left(\frac{g h}{f} \frac{\partial t}{\partial u}\right)+\frac{\partial}{\partial v}\left(\frac{f h}{g} \frac{\partial t}{\partial v}\right)+\frac{\partial}{\partial w}\left(\frac{f g}{h} \frac{\partial t}{\partial w}\right)\right]$.

From the divergence theorem, we know that:

$$
\begin{gathered}
\int_{\tau}(\nabla \cdot \vec{V}) \cdot d \tau=\oint \vec{V} \cdot \overrightarrow{d a} \\
\vec{V}=\frac{\hat{r}}{r^{2}} \quad \text { and } \quad \overrightarrow{d a}=R d \theta \cdot R \sin \theta d \varphi \hat{r}
\end{gathered}
$$

RHS $\quad \oint \vec{V} \cdot \overrightarrow{d a}=\frac{1}{R^{2}} R^{2} \int \sin \theta \cdot d \theta \int d \varphi=4 \pi$
LHS $\quad \int_{V}(\nabla \cdot \vec{V}) d \tau=\int_{V}\left[4 \pi . \delta^{3}(r)\right] d \tau=4 \pi \int_{V} \delta^{3}(\vec{r}) d \tau$

$$
\nabla \cdot \frac{\hat{r}}{r^{2}}=4 \pi \delta^{3}(\vec{r}) \quad \int_{V} \delta^{3}(\vec{r}) d \tau=1
$$

The Concept of delta function

$$
\delta(x)=\left\{\begin{array}{ll}
0, & x \neq 0 \\
\infty, & x=0
\end{array} \quad \int_{-\infty}^{\infty} \delta(x) d x=1\right.
$$

Different forms of delta function

3. $\delta(x)=\lim _{\lambda \rightarrow \infty} \frac{\sin \lambda x}{\pi x}$
4. $\quad \delta(x)=\lim _{\lambda \rightarrow \infty} \frac{\lambda}{\pi\left(\lambda^{2} x^{2}+1\right)}$
5. $\quad \delta(x)=\lim _{\epsilon \rightarrow 0} \frac{\varepsilon}{\pi\left(x^{2}+\epsilon^{2}\right)}$

The Dirac delta function is invented by Paul Dirac in the early 1930. In a strict mathematical sense, $\delta(x)$ is not a function at all because it has a singularity at the origin.

There are many ways to construct a delta function.

(1) $\delta(x)=\lim _{n \rightarrow \infty} R_{n}(x)$
(2) $\delta(x)=\lim _{n \rightarrow \infty} T_{n}(x)$
6. $\quad \delta(x)=\frac{1}{\sqrt{\pi}} \lim _{\epsilon \rightarrow 0} \frac{1}{\sqrt{\epsilon}} e^{\left(-\frac{x^{2}}{\epsilon}\right)}$
7. $\quad \delta(x)=\frac{1}{2} \frac{d^{2}}{d x^{2}}|x|$
8. $\quad \delta(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i u x} d u$

We can use $\delta(x)$ to define a step function, $S(x)$ as follow

$$
S(x)=\int_{-\infty}^{x} \delta\left(x^{\prime}\right) d x^{\prime}= \begin{cases}0, & x<0 \\ 1, & x>0\end{cases}
$$

Properties of $\delta(x)$

1.

$\int_{-\infty}^{\infty} f(x) \cdot \delta(x) d x=f(0)$
2. $\int_{-\infty}^{\infty} \delta(x) d x=1$
3. $\quad f(x) \delta(x)=f(0) \delta(x)$
4.
$\delta(k x)=\frac{1}{|k|} \delta(x)$
Proof

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) \delta(k x) d x= \pm \int_{-\infty}^{\infty} f(y / k) \delta(y) \frac{d y}{k} \\
& = \pm \frac{1}{k} f(0)=\frac{1}{|k|} f(0)=\int_{-\infty}^{\infty} f(x) \frac{\delta(x)}{|k|} d x
\end{aligned}
$$

5. $\quad \delta(a x-b)=\delta\left(a\left(x-\frac{b}{a}\right)\right)=\frac{1}{|a|} \delta\left(x-\frac{b}{a}\right)$
6. $\int_{-\infty}^{\infty} \delta(x-a) \delta(x-b) d x=\delta(a-b)$
7. $\int f(x) \delta^{\prime}(x) d x=\int[f(x) \delta(x)]^{\prime} d x-\int f^{\prime}(x) \delta(x) d x$

$$
=\frac{d}{d x}\left[\int f(x) \delta(x) d x\right]-f^{\prime}(0)=-f^{\prime}(0)
$$

8. $\quad \int_{-\infty}^{\infty} g(x) \delta(f(x)) d x=\left.\sum_{i} \frac{g(x)}{\left|\frac{d f}{d x}\right|}\right|_{f_{\left(x_{i}\right)}}$
9. $\quad \delta\left(x^{2}-a^{2}\right)=\frac{1}{2 a}[\delta(x-a)+\delta(x+a)]$

Dirac delta function is closely related to Fourier analysis. Consider a "complete" orthonormal set of functions $\varphi_{\boldsymbol{n}}(x)$,

$$
\int \varphi_{n}(x) \varphi_{m}^{*}(x) d x= \begin{cases}0 & n \neq m \\ 1 & n=m\end{cases}
$$

"Complete" means that any arbitrary function $f(x)$ can be expressed in terms of $\varphi_{n}(x)$

$$
\begin{equation*}
f(x)=\sum_{n} a_{n} \varphi_{n}(x) \tag{1}
\end{equation*}
$$

the coefficients a_{n} is

$$
a_{n}=\int_{-\infty}^{\infty} f\left(x^{\prime}\right) \varphi_{n}^{*}\left(x^{\prime}\right) d x^{\prime}
$$

Now if we substitute $a_{\boldsymbol{n}}$ back into eq.(1) on page 61

$$
\begin{aligned}
f(x) & =\sum_{n}\left[\int_{-\infty}^{\infty} f\left(x^{\prime}\right) \varphi_{n}^{*}\left(x^{\prime}\right) d x^{\prime}\right] \cdot \varphi_{n}(x) \\
& =\int_{-\infty}^{\infty} f\left(x^{\prime}\right)\left[\sum_{n} \varphi_{n}^{*}\left(x^{\prime}\right) \varphi_{n}(x)\right] d x^{\prime} \\
& \delta\left(x-x^{\prime}\right)=\sum_{n} \varphi_{n}^{*}\left(x^{\prime}\right) \varphi_{n}(x)
\end{aligned}
$$

If $\varphi_{\boldsymbol{n}}$ is a continuous function

$$
\delta\left(x-x^{\prime}\right)=\int_{-\infty}^{\infty} \varphi_{k}^{*}\left(x^{\prime}\right) \varphi_{k}(x) d k
$$

We can see that any orthonormal set of functions can be used to derive the delta function.

3D delta function

	$\delta^{3}(\vec{r})=\frac{1}{(2 \pi)^{3}} \int e^{i \vec{k} \cdot \vec{r}} d^{3} k$
Cartesian	$\delta^{3}(\vec{r})=\delta(x) \delta(y) \delta(z)$
Spherical	$\delta^{3}(\vec{r})=\frac{1}{r^{2} \sin \theta} \delta(r) \delta(\theta) \delta(\varphi)$

$$
\int \delta^{3}(\vec{r}) d \tau=\int \delta^{3}(\vec{r}) r^{2} \sin \theta d r d \theta d \varphi
$$

$$
=\int \delta(r) d r \cdot \int \delta(\theta) d \theta \cdot \int \delta(\varphi) d \varphi=1
$$

$$
\text { Cylindrical } \quad \delta^{3}(\vec{r})=\frac{1}{r} \delta(r) \delta(\varphi) \delta(z)
$$

$$
\int \delta^{3}(\vec{r}) \cdot d r \cdot r d \varphi \cdot d z=\int \delta(r) d r \cdot \int \delta(\varphi) d \varphi \cdot \int \delta(z) d z
$$

$$
=1
$$

The mathematical theory of Vector Fields

Here we want to prove that through the laws of electricity and magnetism and the boundary conditions, there always exists a unique vector field as the solution.

We want to find out, to what extent is a vector field determined by it divergence and curl? Namely if

$$
\nabla \cdot \vec{F}=D \quad \text { and } \quad \nabla \times \vec{F}=\vec{C} \quad \text { are known }
$$

Can we determine the vector field \vec{F} uniquely?
(1) Does \vec{F} exist?
(2) Is it unique?

If the source is known, can we determine the field?

Now if we go back to the Coulomb field,

$$
\begin{gathered}
\nabla \cdot \frac{\hat{r}}{r^{2}}=4 \pi \delta^{3}(\stackrel{\rightharpoonup}{r}) \quad \nabla\left(\frac{1}{r}\right)=-\frac{\hat{r}}{r^{2}} \\
\nabla^{2}\left(\frac{1}{r}\right)=-4 \pi \delta^{3}(\vec{r})
\end{gathered}
$$

The above equations also can be applied to the separation Vector .

$$
\nabla\left(\frac{1}{r}\right)=-\frac{\widehat{r}}{r^{2}} \quad ; \quad \nabla^{2}\left(\frac{1}{r}\right)=-4 \pi \delta^{3}(\vec{r})
$$

First we will show that $\overrightarrow{\boldsymbol{F}}$ does exist.
Let $\quad \vec{F}=-\nabla U+\nabla \times \vec{W}$
where

$$
\begin{aligned}
& U(\vec{r})=\frac{1}{4 \pi} \int_{V} \frac{D\left(r^{\prime}\right)}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} d \tau^{\prime} \\
& \vec{W}(\vec{r})=\frac{1}{4 \pi} \int_{V} \frac{\vec{C}\left(\overrightarrow{r^{\prime}}\right)}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} d \tau^{\prime}
\end{aligned}
$$

Now take the divergence of $\overrightarrow{\boldsymbol{F}}, \boldsymbol{\nabla} \cdot \overrightarrow{\boldsymbol{F}}=-\nabla^{2} \boldsymbol{U}$

$$
\begin{aligned}
& \nabla \cdot \vec{F}=-\nabla^{2} U=-\frac{1}{4 \pi} \int D\left(r^{\prime}\right) \nabla^{2}\left(\frac{1}{r}\right) d \tau^{\prime} \\
& =\frac{1}{4 \pi} \int D\left(r^{\prime}\right) 4 \pi \delta^{3}\left(\vec{r}-\overrightarrow{r^{\prime}}\right) d \tau^{\prime}=\mathrm{D}(\vec{r})
\end{aligned}
$$

When we take the curl of \vec{F}, we have

$$
\begin{aligned}
& \nabla \times \vec{F}=\nabla \times(\nabla \times \vec{W})=-\nabla^{2} \vec{W}+\nabla(\nabla \cdot \vec{W}) \\
& \begin{aligned}
\nabla & \nabla^{2} \vec{W}=-\frac{1}{4 \pi} \int \vec{C}\left(\overrightarrow{r^{\prime}}\right) \cdot \nabla^{2}\left(\frac{1}{r}\right) d \tau^{\prime} \\
& =\int \vec{C}\left(\overrightarrow{r^{\prime}}\right) \delta^{3}\left(\vec{r}-\overrightarrow{r^{\prime}}\right) \mathrm{d} \tau^{\prime}=\vec{C}(\vec{r})
\end{aligned}
\end{aligned}
$$

So the function $\overrightarrow{\boldsymbol{F}}$ exist !!!

The uniqueness of the vector field of a particular boundary condition is more difficult to prove.

If the derivative of the \mathbf{C} function is finite everywhere, then the solution F is unique.

Scalar and vector potentials

Finally we will review briefly two specific vector fields that are commonly encountered in this course.

Curl-less field

$$
\begin{gathered}
\text { A conservative field } \\
\nabla \times \vec{F}=\mathbf{0} \quad \text { everywhere } \\
\Longrightarrow \quad \vec{F}=-\nabla U \\
\Longrightarrow \quad \int_{a}^{b} \vec{F} \cdot \overrightarrow{d l} \quad \text { independent of path } \\
\Longrightarrow \quad \\
\Longrightarrow \vec{F} \cdot \overrightarrow{d l}=0
\end{gathered}
$$

Divergence-less field

$$
\begin{gathered}
\boldsymbol{\nabla} \cdot \overrightarrow{\boldsymbol{F}}=\mathbf{0} \quad \text { everywhere } \\
\Longrightarrow \quad \overrightarrow{\boldsymbol{F}}=\boldsymbol{\nabla} \times \vec{W} \\
\Rightarrow \quad \begin{array}{c}
\int_{s} \overrightarrow{\boldsymbol{F}} \cdot \overrightarrow{d a} \quad \text { independent of the surface, } \\
\text { and only depends on the boundary of } \mathrm{S} .
\end{array}
\end{gathered}
$$

$$
\Longrightarrow \quad \oint \vec{F} \cdot \overrightarrow{d a}=0
$$

Do Problem 1-55 in class.

