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CHAPTER 1
VECTOR ANALYSIS

Lee Chow
Department of Physics
University of Central Florida
Orlando, FL 32816

1. VECTOR ALGEBRA

Addition of two vectors
A+B=B+4 Communicative
A+(B+C)=(A+B)+C Associative
A-B=4+(-B) Definition
Multiplication by a scalar
a(A+B) =ad+aB Distribution
Dot product of two vectors

A -§=ABc050, O isangle between A & B
A-(B+C)=A-B+4-C
A-B=B-A
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* Cross-product of two vectors

A x B = ABsin0h
wherenn LA, and i LB

In a strict sense, if A and B are vectors, the
cross product of two vectors is a pseudo-vector.

A vector is defined as a mathematical quantity
which transform like a position vector:

¥ =xi+yj+zk
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Cross-product follows distributive rule but not
the commutative rule.

Ax(B+C)=AxB+AxC
Distribution rule

But

so
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Vector components

Even though vector operations is independent of
the choice of coordinate system, it is often easier
to set up Cartesian coordinates and work with
the components of a vector.

A=A+ A9 +A,2

where X, J, and Z are unit vectors which are
perpendicular to each other. A,, A,, and 4,
are components of 4 in the X-, y- and z-
direction.
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A+B=(A,+B)%+ (4, +B,)y+ (A, + B,z
A-B=AB,+A,B,+A,B,

AxB = (A% +A,5 +A,2) x (B, + B,y + B,2)
= (4yB, - A,B))% + (A,B, — A.B,)y + (A;B, — A,B,)2

0y 2
-4, 4, 4,
B, B, B,
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Vector triple products

A-(BxC)=B-(CxA)=C- (AxB)

A, A, A,
Z'(§X6)= Bx By Bz
¢, €, C,

B, B, B,

=-|a, 4, 4,

c; C, C,
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A-(BxC)=(AxB)-C
Ax(BxC)=B(A-C)-C(@A-B)

(AxB)x €= —A(B-C) + B@A-0)
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All these vector products can be verified using the
vector component method. It is usually a tedious
process, but not a difficult process.

Position, displacement, and separation vectors

The location of a point (x, y, z) in Cartesian coordinate
as shown below can be defined as a vector from (0,0,0)
to (x, Y, z) is given by

T =xi+yj+zk

where s
|r|=r=11x2+y2+22 ‘m.. .....
and

- Lz

Vxz + y2 + 72

T oxi+yj+zk N
r
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In general, when a charge is not at the origin, say at
(x’,y’, 2°), to find the E field produced by this
charge at another position, (x, y, z), we use the
following, which is called a separation vector,

Infinitesimal displacement vector is given by

d? = dxx + dyy + dzz

r=r—-r
r=x-xX+y-y)y+(@-2)z
7l =r=F-7|
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o r=r
7=
r—r

Vector transformation

So far we have used two different ways to describe
vector; (a) geometry approach---vector as an arrow,
(b) algebra approach--- vector as components of
Cartesian coordinates. However both approaches
are not very satisfactory and are rather naive.

Here we follow the approach of a mathematician
and define a vector as a set of three components that
transforms in the same manner as a displacement
when we change the coordinates. As always, the
displacement vector is the model for the behavior of
all vectors.
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A more rigorous definition of vector starts with
the concept that the space is (a) isotopic, so no
preferred direction, (b) homogeneous, so no
preferred location. A physical quantity such as
displacement or force, should be independent of
the coordinate system we choose.

LetA = OP

sish[euy 10097 1 dvy)  91FER

A=4,5+A;2
A=Ay +A,7

FIGURE 115
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e
e
FIGURE 1.158
Ay =A-cos(0— @)

A - (cosO - cose + sinf - sing)
= Aycosgp + A,sing

A, =A-sin(0 — @)
= A (sinb - cosp — cos0 - sing)

=—Ay-sing + A, - cosg

sisfpuy 20307 1wy 91

The relationship between A}, A; and A,, A, can be
expressed below:
Ay = cospA, + singA,
A} = —singA, + cospA,

The above equations can be combined into one matrix
notation;

Ay =<costp sin(p)(Ay)
A, —sing cosp)\A,

This is a rotation about the x-axis. For rotation about
an arbitrary axis, the transformation law has the
form:

@

91
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A;‘ R xx R xy sz A x
Ay |=(Ryx Ryy Ry |( A4,
A’z R zx R zy Rzz Az

The rotation matrix above describes the rotation
transformation of a vector from one coordinate to another
coordinate, it can be written more compactly as

3
=1

This is how a displacement vector transformed. In general
we define a vector as any set of three components that
transform in the same manner as a displacement vector
when we rotate the coordinates.

sisk[euy g0 1 deq) 9178

Similar idea can be extended to tensor; namely for a
second rank tensor in 3D, the rotation through an
arbitrary angle can be expressed as:

3 3
Ty = Z Z Rix RjiTy
=g

Differential vector calculus

In 1D, the infinitesimal change of a function f(x), df is

given by
df = (@) dx = (af (x)> dx

x ax

Where the derivative df(x)/dx is the same as the partial
derivative %" (x)/ ax The derivative is the slope of the
function f(x).

91VE/8
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For a function with two variables, f (x, y), the
infinitesimal change of the function, df, is given by:

_(9f of
df = (ﬁ) dx + (@) dy
y x
Note that when we take partial derivative with respect to

X, we need to hold the other variable y as a constant. This
concept can extent to n-dimension.

In 3D with 3 variables, we have

df = (%) dx + (%) dy + (g) dz

This expression looks a lot like a vector dot product!

sisk[eay g0 1 deq) 9178

dfg(afﬁ af of -

al+@]+£k>-(dxt+dy]+dzk)

df =Vf-di
= ) (-3

Vf is the gradient of the function f (x,y,z). Vf is a vector
field and pointing at the direction of maximum slope.

In general, the function f(x, y, z) is an arbitrary
function, however, Vf has some special properties it is
not arbitrary any more.

91/VE/8
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Problem 1.11(b)

Find the gradient of the function, f(x,y,z)=x%y’z*

_of of  of
Vf = ax + a—yy + EZ
= 2xy3z*% + 3x2y%z*y + 4x?y3232

Example 1.3
Find the gradient of r = \/x? + y? + z2.
or ~ | Or ~  Or .
r= —Xx+—-y+—-2
4 axx + ayy + 0z
xX+yy+zz T _ P

Jxt+yZ4z2 T

siskpeuy a0j90A 1 e

The operator “del” V

vV is a vector, and
it is also an operator.
v=i 9 +j 9 +k 9
=tox ™/ ay dz

As an operator, it always operates on a function.
As a vector, it can operates on a scalar, or a vector.

9/VEIR

sisApeuy 103004 1 dey)

Divergence of a vector field
— av, av, av,

v.-V= _7
ax + ady + 0z

The divergence of a vector field is a measure of how the
vector field “spread out from a given point”.

9LVE/8
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Vf(x,y,z2)  —— Gradient of f(x,y,z)
V-V(x,y,z) — —  Divergent of V
VxV(x,yz) — Curlof V

—xi -yj

V-3

—+
x2+y? 3xZ+y?

3x2 2

_ -1 + 3y
Vai+y? Yx+y?

-1
+ +
[i/x2 +y? YxE+y?

a a
V- [y +aj] = gyl + 5o A =0

90 —-x + a -y
T ox [i/xz n yz] ay [i/xz n yz]

91VE/8
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= =i -yj = . .
V_3/xz+yz+3/xz+yz V=-yi+xj
The Curl
The Curl of a vector field is defined as
i j k =
— a o a &
VxV=|— — —

dx dy 0z g
Ve V, V, 4
_a [0V, VYN | L caV, aV,\ , ¢ (Vy vV, /
(5 ) (G- (G-

The Curl measures how a vector field “curl” around a
point. Curl is a vector operator, but in general, VX V not
necessarily perpendicular to V

Example ( This is not the same as example on page 21)

V=—zi+ xj, V- V= 0,and V X V is calculated below.

i j ok
rxv=[2 9 9f__ji%
dox 09y 0z
-z x 0

WxV)-V=—x

)

(VxV)isnot L toV

91/VE/8
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xz  ay? Bzz

Yector Product Rules (a) Divergence of a gradient

Page 20-21, there are many rules. It is useful . ,,

to work out some of the expressions in details E v.-(Vf) = li +] [ + L —k s

yourself at home. 9 ay " 2
g: = ﬂ 62f sz é:

Second derivatives

This is called the Laplacian of f(x,y,z). This is a
very common operator, which we encounter in
mathematical physics quite often.

. ¢) Gradient of a divergence (Seld d
(b) Curl of a gradient (Always equals to zero) © £ (Seldom used)
- . a 3 6 0A dA .
i k g v(v-A A— y 2
) ) s : D=z =5
VxVf=|dx dy oz H H
of of of _(Pay | 0Ay 95\, (%4 | 3y | 0747\ -
ox dy oz , B <6x2 + 0xdy + 0x0z L+ 0yox + ay? + 0yoz J ,
A AV B AT R R AT i 2 2 -
(6yaz 620y> l+(0zax axaz)] + (0x6y 6y0x) k + (6 Ax + 2 Ay )k
=0 0z0x azay az2
Note: V(V-4) # (V-V)A
(d) The divergence of a Curl (Always = 0) (e) The Curl of a Curl
a a .0 1) — A _ 22
v-(vxA) =i j kaz Vx(VxA)=v(Vv-4)-V?A
dy 0z ay x(7x4) = \32ay " 552 ) "\ a2z ~amaz)|
_[08%4, _9%4, 024, _ 9%4, 024y 9%4y] _ : 2 2 2 2 :
_[axay axaz] + dyoz ayax] + [Bzax azay] =0 + w — 9 Ay — 9 4y — 07 Ay T
dydz  dz? axz2  Axdy

2%, _ 9%4,\ (0%, 94, %
Ixdz  9Ix? ay2  dydz
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1-3 Integral calculus

Let’s start with a 1D function, F(x), which is the
derivative of another function, f(x)

_df@)

F@x) dx

Then
b bd b
[y Feoydx = [} L2 dx = [7 df (x)=f(b) - f(a).
The result of the integral only depends on the end point

of f(x), because in 1D, the boundary of an arbitrary
curve is the end point.

siskpeuy a0j90A 1 e

In general, when we are in a 3D space, the line integral of
an arbitrary function V(x, y, z)

b
f V(x,y,2)-dl

a
will depend on the path taken.

However, if we have a specific function, namely

F(x,y,2) = Vf(x,,2)

Then the line integral of a gradient is independent of the
path taken.

sisApeuy 103004 1 dey)

b P
f wf) - di = f(b) - f(a)

The fundamental theorem of Gradients

This is called the “Fundamental theorem for
gradients”, and

$wn-di=o

In physics, we said that if we can associate a
potential to a field (force), then the field (force) is
conservative. Namely the work done by the field
does not depend on the path.

91428
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The fundamental theorem of divergence.

The divergence theorem states that:

f(V-V)dt:iV-dﬁ‘

The divergence theorem is very similar to the
gradient theorem, namely, the integral (volume) of
a derivative (divergence) of a function is equal to
the function evaluated at the boundary (surface).

sisA[euy 1030 | dey)

It is also called Gauss’s theorem or Green’s
theorem.

The volume integral of the divergence of a vector field
over the whole volume is equal to the value of the vector
field evaluated at the surface which bounds the volume.

Physically this divergence theorem translates into
conservation law again. For example, for a non-
compressible fluid, V - V is a measure of the source
strength, and V - da is a measure of the flux.

914zI8
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The fundamental theorem of Curls

f (V X I_i) . E = % V- ﬁ Stoke’s theorem
s Line £

sisA[euy 1030 | dey)

If the surface is a closed surface,

}gs(VxV)-E:o
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The Stoke’s theorem states that the surface
integral of a Curl is only depended on the
boundary condition, namely the line integral of
the “edge” of the surface and does not depend on
the surface we choose, as long as the boundaries
are the same.

For example:

siskpeuy a0j90A 1 e

Relations among the fundamental theorems

(1) Gradient Theorem:
| @n-di=r®-r@ .

(2) Divergence theorem:

J,(V-V)dr=$,V - da

sisApeuy 103004 1 dey)

(3) Stoke’s theorem:
f(VXV da= fﬁ-ﬁ
s -
Line

These are boundary value problems, relating the integral
of a “derivative” of the function to the evaluation of the
function at its boundary.

From the previous page, if we combine equations (1) and
(3), (namely let V = Vf)

For any surface

[wxw@ni-aa-o
VX (Vf)=0

If we combine (2) and (3),
fv-(w?)w:f(VxV)-E:o
v

v-(VxV)=0

9LVE/8
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Note: In general, we can start with an arbitrary vector
field, V(x,y, z), or an arbitrary function, f(x,y,z).

However, Vf or V x V are not arbitrary function
any more, namely;

Vf is a Curl-free vector field,

and

V x4 is a divergence-free field.

o1
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Integration by parts

From product rule for the derivatives
d dg df
9= f(a) +9<H)
‘We can see that by integrating both sides, we end up with

Laom=[)os [o

This can be extended to vector product rule such as

V- (fA)=f(W-A)+4-(Vf)

914zI8
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Integrating over a volume, we end up with

fv-(fﬁ):h: ff(v-ﬁ)dwfﬁ-(w)dr

Re-arrange and applying the divergent theorem

ffﬁ'dz_izff(Vﬁ)d‘r+fZ~(Vf)dr

sisA[euy 1030 | dey)
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Curvilinear Coordinates

(a)Cartesian Coordinates
(b)Spherical Coordinates

(c)Cylindrical coordinates

These coordinates can be shown on the next two
pages

91
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Cartesian Coordinates
(x, Y, 2)

Spherical Coordinates
(r,8,9)

I1/VEIR
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Cylindrical Coordinates
(s’ (p’ Z)

They are all orthogonal curvilinear coordinates. The
three directions of each coordinate satisfies the cyclic
relationship.

9LVE/8
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Cartesian coordinates

Cariesian.” dl=dx& +dy§ +dz§ dr =dxdydz

Gradiens: V=i lly
radient: =% ay”
. Buy vy

Divergence: V -v = e + I

Curl: va—(avz By
ur “ ey oz
L

s Vi =
Laplacian: V' = P

a

9z

dv,

8z

LB By L 3&_3&).
)‘*(a—z‘a*x)”(ax o)
o
9z’

91VE/8
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Spherical Coordinates

Spherical: di = dr# +rdod + rsin@de®, dr=r*sin0drd@de

Gradient: 9T \aT | ar
V=t -t ——
ar g rsiné dg

Divergence:

3 5 9, ™
—(r*u) + —— —(sinflug) + — .
r rsin ff a6 rsint d¢

kTS r

sind ag

e U2 ingogy ]y [0 35
VS Seine LaeovelT r aro e

1 @7

T sinte 397

9LVE/8
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Cylindrical Coordinates

Cylindrical: di = ds$ + sde + dzz, dr=sdsdpdz

Gradient:

vr=2T4 l”a- ar,

Divergence:

1
V.v=-
5

PRy T G P

E] iy 130y B,
—{5u -— 4 —
ds N 5 dg iz

91HE8
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These complicated formulism can be understood through
orthogonal curvilinear coordinates.

siskpeuy a0j90A 1 e

Gradient in an arbitrary orthogonal curvilinear system

Assume we have a function t(u, v, w), where u, v, w are
orthogonal, the change of t from t(u, v, w) to
t(u+du, v+dv, w+dw) is given by

de=2Laus Ly 2y
T T w Y Taw ™
This can be written as a dot product

dt = Vt - di = (Vo) fdu + (VE),gdv + (Vt), hdw

9/VEIR
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From the last equation from page 50, we can see that

Vt_latA+16tA+16tA
=Fou""gav’ "how”
For the most common coordinates
System u v w|f g h
Cartesian x y z |1 1 1
Spherical r 8 ¢ |1 r rsinf
Cylindrical | s ¢ 2z |1 |

9LVE/8
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where
di = fduii + gdvd + hdwiw
and
14dt 10t 10t
(Vt), = Fou' (vt), = etk Ve), = how
Similarly
1 a ] a
V- A= — | —(ghA —(fhA —(feAy) |,
o [&u(g W)+ 5= (fhA) + =—(fg ..,}]
1[a a . 1[4 ] ) Z
VA= o [Ethﬂu-)— E""“"]“ + o [aw.) - E(-‘Mu.}]v :
1[a a . H
+f—g[a{2-’1u)— ﬁﬁf’lu)} w, H

The Dirac Delta Function XL

The divergence of V= 7/r?

This Coulomb field has a 1/7? dependence. The field is
shown above and it spreads out from the origin. So
intuitively we can see that V - (?/rz) is non-zero.
However, if we take the divergence, we will find that

i~ 1 a 1
(T =— ([ 12sinf-= | = 22727
v ( TZ) r2sin@ or (r sind rz) 0

If we look closer we will find that

For r+0, V-v=0
For r=0, V-V=ow

9LVE/8
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From the divergence theorem, we know that:
f(vi)w:fﬁﬁ
T
V= iz and da = RdO - Rsin0dg?
L
- - 1 i
RHS fV-da=FR fsme-defd(pzht

LHS [ (V-V)dr = [ [4m.83(1)]dr = 4= [, 63 dr

LA faS(mr=1
v r2—4-n'8 @) .

91HE8
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The Concept of delta function

5(x) = {30 ’;i% f_wtf(X)dx =1

f S(x)f ()dx = £(0), f f(x)8(x — a)dx = f(a)

1sA[euy 10304 1°dBY) QIR
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The Dirac delta function is invented by Paul Dirac in the
early 1930. In a strict mathematical sense, §(x) is not a
function at all because it has a singularity at the origin.

There are many ways to construct a delta function.

1 =7[ijg01;n(x) (2) 8(x) = lim Tp(x)

sisf[euy 10007 1 Aoy 91/ha/8

Different forms of delta function

.. Sinix

3. 8(x) = ,lll—g«l) nx
. A

4. 8(0) = Jim ~rm
. £

5. o(x) = Ll})g—n(x2+ez)

]

91
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2
TGS
6. 8(x) = ﬁlel_l)’((l)\/ge
dZ
7. 8(x) = S |x|
8. 8(x) = iffow e“*du

‘We can use §(x) to define a step function, S(x) as follow

X
(o, <0
S(x) = fs(x)dxz{l x=9

wsAfeuy 101097 1°dvY)  91/FER

Properties of §(x)

L [5,F () - 8(x)dx = £(0)
2. 2 8()dx =1

3. f®)8(x) = f(0)8(x)

4. 8(kx) = - 8(x)

Proof

©o o d
f f)8(kx)dx = + f 108

_ 1 _1 o 85(x)
= 41O =@ = [T, f(0) P dx

sisk[euy g00 1 dey)

o

1
lal

J(ax—b)zé'(a(x—s)): 6(x—§)

6. [ 8(x—a)8(x—b)dx=8@a—b)

7. [f)8 (dx = [[f(0)6()]'dx — [ f'(x)8(x)dx

®

b

=L 1f f@)8()dx] - £'(0) = —f'(0)
[o98(r@)ax = 55y,

8(x*—a?) = 2—1a[8(x —a)+8(x+ a)]

wsAfeuy 101097 1°dvY)  91/FER
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Dirac delta function is closely related to Fourier
analysis. Consider a “complete” orthonormal set of
functions ¢, (x),

Pn(Pp()dx ={0 TFM

" m 1 n=m

“Complete” means that any arbitrary function f(x) can be
expressed in terms of ¢,,(x)

f0) =) agn® @)

n

the coefficients a,, is

siskpeuy a0j90A 1 e

Now if we substitute a,, back into eq.(1) on page 61

1@ =) | [ Feena)ax |- guo

=[% F () [En @i (X)) X’
8x—x)= ) Prx)Pn(®)

If ¢,, is a continuous function

S(—x) = f PP dk

We can see that any orthonormal set of functions can be
used to derive the delta function.

9/VEIR
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[83@)dr = [ 83(@)r?’sin0drdde
=[8(r)dr- [8(8)d0 - [6(p)de =1
Cylindrical 8@ = 16)8(@)8(2)

[83() -dr-rde-dz = [8(@)dr- [ §(p)de - [ §(z)dz
=1.

= [ revenaax
3D delta function
53(‘) (2 )3feiz~?d3k {
Cartesian HOE 8(x)8(y)é(2) ;
spherical 83F) = 2 51)6(0)5(0)

Now if we go back to the Coulomb field,
1_ 7
v()=-%

v2(3)= - 4m83@)

7
rz

V.= =4n83(1)

The above equations also can be applied to the

separation Vector .

V2 (3) = —4m83(F)

9L/
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The mathematical theory of Vector Fields

Here we want to prove that through the laws of
electricity and magnetism and the boundary conditions,
there always exists a unique vector field as the solution.

‘We want to find out, to what extent is a vector field
determined by it divergence and curl? Namely if

V-F=D and VxF=C areknown
Can we determine the vector field F uniquely?
(1) Does F exist?

(2) Is it unique?

If the source is known, can we determine the field?

914zI8

sisk[euy g00 1 dey)

First we will show that F_does exist.

Let F=-VU+VxW

U = f |D(r

where

1
Ty
W()—4nf|r_r dt

Now take the divergence of F, V-F=-V2U

sisA[euy 1030 | dey)
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V.- F=-V2U = —ifz)(r')v2 1 dr’
N T 4m r
_1 3(3_ 7 _
= .-/ D) 4ns (r—r")dr'=D@)
When we take the curl of f, we have 0
VxF=Vx(VxW)=-V2W+ V(W)
VW = —ifE(F)-VZ Dar
T 4nm r
= [CENSBF —r)dr = CF)

So the function F exist !l

91
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The uniqueness of the vector field of a particular
boundary condition is more difficult to prove.

If the derivative of the C function is finite everywhere,
then the solution F is unique.

9/VEIR
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Scalar and vector potentials

Finally we will review briefly two specific vector fields
that are commonly encountered in this course.

Curl-less field A conservative field
VXF=0 everywhere

= F=-vU

=3 f:f -dl  independent of path

=3 ff-ﬁ:o

91428
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Divergence-less field

= fsi" -da independent of the surface,
and only depends on the boundary of S.

= ff-ﬁ:o

Do Problem 1-55 in class.

9L/
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