

What we will learn from E&M I ? Chap. 1 Vector analysis and Integral Calculus • Vector algebra • Differential calculus • Integral Calculus • Curvilinear Coordinates • Delta Function

Chap. 2 Electrostatics		
Coulomb law (point charge)	$\vec{F} = k \frac{q_1 q_2}{r^2} \hat{r}$	8/20/2014
E field due to charge density	$\overrightarrow{E}=rac{1}{4\pi\epsilon_{o}}\iiintrac{ ho dV}{r^{2}}\widehat{r}$	Electricity
Gauss Law	$ abla \cdot \overrightarrow{E} = rac{ ho}{\epsilon_o}$	& Magnetism
E field is conservative	$\oint \vec{E} \cdot \vec{d\ell} = 0 \implies \nabla \times \vec{E} = 0$	Ē
Scalar potential	$\overrightarrow{E} = -\nabla V$	
Poisson's equation	$ abla^2 V = -rac{ ho}{\epsilon_o}$	4

Relationship between Coulomb law and Gauss law Gauss law and Coulomb law are closely related. $\oint \vec{E} \cdot \vec{da} = \oint \frac{1}{4\pi\epsilon_o} \cdot \frac{q}{r^2} \hat{r} \cdot (r^2 \sin\theta d\theta d\varphi \hat{r}) = \frac{q}{\epsilon_o}$ Gauss law is easier to solve when symmetry is involved. $\nabla \cdot \vec{E} = \frac{1}{4\pi\epsilon_o} \int \nabla \cdot \left(\frac{\rho}{r^2} d\tau\right) \hat{r}$ $= \frac{\rho}{4\pi\epsilon_o} \int \nabla \cdot \left(\frac{\hat{r}}{r^2}\right) d\tau = \frac{\rho}{\epsilon_o}$

4. Curl of the
$$\vec{E}$$
 field.
In electrostatic, the curl of \vec{E} field is equal to
zero. We can start with Coulomb law

$$\int_{a}^{b} \vec{E} \cdot \vec{ds} = \frac{1}{4\pi\epsilon_{o}} \int_{a}^{b} \frac{q}{r^{2}} dr = \frac{1}{4\pi\epsilon_{o}} (\frac{q}{r_{a}} - \frac{q}{r_{b}})$$
The integral does not depend on the path

$$\oint \vec{E} \cdot \vec{ds} = \int_{s} (\nabla \times \vec{E}) \cdot \vec{da} = 0$$
Therefore

$$\nabla \times \vec{E} = 0$$
 is always true.
17

Since the curl of a gradient is always equal to zero $(\nabla \times \nabla f = 0)$, we can see from last equation that the electric field, \vec{E} can be expressed as a gradient of a scalar potential:

$$\overrightarrow{E} = -\nabla V$$

This also implied that the \vec{E} is a conservative field,

$$\vec{F} = q(\vec{v} \times \vec{B})$$

There is no work done by the B field because \vec{F} is perpendicular to \vec{B} .

6. Biot-Savart Law

$$\overrightarrow{B} = rac{\mu_o}{4\pi} \int rac{ec{l} imes ec{dr}}{r^2}$$
 (Magneto-statics)

7. Continuity equation

$$\nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0$$
8. Ampere's Law

$$\oint \vec{B} \cdot \vec{ds} = \mu_0 I$$
This is the magnetic analogy of Gauss Law.

9. Divergence of the B field $\nabla \cdot \vec{B} = 0$ Because there is no magnetic monopole. 10. Curl of B From Ampere's law, $\oint \vec{B} \cdot \vec{ds} = \mu_o I$ $\oint \vec{B} \cdot \vec{ds} = \int (\nabla \times \vec{B}) \cdot \vec{da} = \mu_o \int \vec{J} \cdot \vec{da}$ $\nabla \times \vec{B} = \mu_o \vec{J}$ (2)