Extraction of Solar Cell Physical Parameters Model with Double Exponential from Illuminated I-V Experimental Curve

S. Yadir1, S. Assal1, M. khaider1, M. Sidki2, M. Benhmida1
A. Malaoui3, E. Bendada3, M. Mabrouki3

1 Equipe d’Electronique et Optique du Solide, Université Chouaïb Doukkali, El Jadida, Morocco.
2 Laboratoire de Mécanique et Energétique, Université Chouaïb Doukkali, El Jadida, Morocco.
3 Laboratoire de Génie industriel, Université Sultan Moulay Slimane, Béni Mellal, Morocco.

Abstract: In this paper, we present a new method for extracting physical parameters of the illuminated solar cell model. The equivalent circuit includes two diodes with two saturation currents I_{01}, I_{02}, a current generator I_{ph}, a series resistance R_S and a conductance G_P [1-4]. One variable nonlinear equations being easier to manage in an optimization program, we determine experimentally the value of R_S, we define a new variable $X = V - R_S I$, and we fit the experimental characteristics using a Mathematica code. This method is compared firstly to the so-called five points method [5-7]. The obtained results are then compared to those given by three extraction methods [5] applied to solar cell model represented by an equivalent circuit containing a single diode. We find that the best agreement with the experimental characteristic is obtained with the two diodes model. The experimental measurements were made, in this study, with a commercial Conrad solar cell.

References

Corresponding author: M. BENHMIDA - benhmida@gmail.com ; BP 232, P.Principale, 24000 El Jadida