X-ray diffraction and Mössbauer studies of nanostructured ball milled Fe$_{50}$Co$_{40}$Ni$_{10}$

N. Bensebaa1*, N. Loudjani1, J.J. Suñol2 and J.M. Grenèche3

1Laboratoire de Magnétisme et de Spectroscopie des Solides, Département de Physique, Faculté des Sciences, Université de Annaba, B.P. 12, 23000 Annaba, Algérie.

2Departamento de Fisica, Universitat de Girona, Campus Montilivi, Girona 17071, Spain.

3Laboratoire de Physique de l’Etat Condensé – UMR CNRS 6087, Université du Maine, Faculté des Sciences 72085, Le Mans Cedex 9, France.

*Corresponding author: n_bensebaa@yahoo.fr

Abstract:

The ball milling of blended iron, cobalt and nickel powders was carried out in a high-energy planetary mill, under argon atmosphere, in order to obtain a nanostructured Fe$_{50}$Co$_{40}$Ni$_{10}$ alloy. Morphological, microstructural and structural changes at different stages of milling were investigated by scanning electron microscopy and X-ray diffraction using a refinement program of the peak diffraction profiles based on the Rietveld method. The hyperfine structure and the alloying of the elemental powders, at the atomic level, were studied by 57Fe Mössbauer spectrometry. X-ray diffraction investigations show that the Fe$_{50}$Co$_{40}$Ni$_{10}$ alloy obtained during milling process is in nanocrystalline state. Disordered Fe-Co based solid solution with bcc lattice was formed with a low value of the crystallite size and a high degree of microstrains and dislocation density. Mössbauer spectrometry reveals the hyperfine magnetic fields distributions which reflect the different surroundings of 57Fe isotopes by Co, Fe and Ni atoms.