UCF Physics: AST 6165 Planetary Atmospheres

Spring 2020 Homework 10
 DUE Thursday, 9 April 2020

Reading for this assignment: Andrews, 5.1-5.5.
Problems:

1. (a) (10 points) Calculate the components of the geostrophic wind in Orlando for a pressure gradient of $3 \mathrm{mbar} / 80 \mathrm{~km}$. The direction of the parallel isobars is from $60^{\circ} \mathrm{NE}$ to $240^{\circ} \mathrm{SW}$, and the wind moves NE to SW. Use today's weather data as necessary (give any values you use in your answer). The angles are compass bearings, so north is 0° and east is 90°.
(b) (5 points) Derive the equation for gradient wind speed vs. radius and plot it from 0 to 1000 km for the conditions in problem 1a.
(c) (5 points) Plot the geostrophic and cyclostrophic acceleration terms of problem 1 b from 0 to 1000 km on the same plot as each other (identify which trace is which). At what radius are the components equal?
2. (20 points) Andrews 5.7. Hint: High-school Algebra II. What kinds of formulae produce limits like this? The reading has solutions for similar problems that should give you a clue what to look for.
3. (10 points) The Knudsen number for atmospheric escape, $\mathrm{Kn} \approx l_{c} / H$, where l_{c} is the mean free path and H is the scale height. At the exobase, $\mathrm{Kn}=1$. For a Maxwell-Boltzmann gas,

$$
\begin{equation*}
l_{c}=\frac{k_{\mathrm{B}} T}{\sqrt{2} \pi r^{2} p} \tag{1}
\end{equation*}
$$

where k_{B} is Boltzmann's constant, T is temperature, r is collision radius of a particle, and p is pressure. For the Earth's atmosphere, find a simplified expression for the Knusden number in terms of pressure (hint: what is the relationship between k_{B} and R ?). Using N_{2} as the main constituent, plot Kn vs. p. The collision radius for $\mathrm{N}_{2}=1.1 \times 10^{-10} \mathrm{~m}$. What is the altitude of the exobase? Use the atmospheric data in earthatm.
4. (10 points) Calculate and compare the thermal escape parameter for hydrogen, helium, carbon, and oxygen, $\lambda=(G M m) /\left(k_{\mathrm{b}} r_{\text {exo }} T_{\text {exo }}\right)$, for Mercury, Earth, Mars, and Jupiter. Comment on the planets' abilities to maintain concentrations of these atoms. For simplicity, you can substitute the average temperature of the atmosphere for $T_{\text {exo }}$ and the radius of the planet for $r_{\text {exo }}$. You should still get a feel for the relative λ values between planets.

