
UCF Physics: AST 5765/4762: (Advanced) Astronomical Data Analysis

Fall 2019 Homework 3

Due Tuesday 17 September 2019

Work:
Become sufficiently familiar with Python to:

1. Display 2D images and surface plots,

2. Write and document functions and procedures with good coding style.

Resources:

1. Chapters 1 and 2 of Bevington (DUE before class Tuesday, 17 September 2019)

2. Greenfield and Jedrzejewski, Using Python for Interactive Data Analysis, ch. 1 – 4 (ch.
4 may be scary; skim what you can if you’re not comfortable with it). DUE before class
Tuesday, 17 September 2019)

3. homework+coding.pdf handout

For general NumPy help:

4. Docstrings of Python routines, as needed, note References and See Also sections

5. Files/python/module_template_with_docstring.py in WebCourses

6. np.lookfor("keyword"): look up functions by word or phrase in docstring

7. Numpy doc wiki: http://docs.scipy.org, especially:

(a) NumPy User Guide, sections “How to find documentation” and “Numpy basics”, espe-
cially early parts of each subsection, especially “Broadcasting”

(b) Cookbook

(c) Additional documentation, especially “Numpy Functions by Category” and “NumPy
Example List”

Hand in:
Again, no loops!
Except where the problems ask you to write a function, put the commands to do all of this

into the main homework file, labeled with the problem numbers in comments. This should be a
clean file of commands to do the problems. It is not a log file. Put the functions in one or more
separate files named for their functionality and import them into the Python session. For example,
you might have a file named square.py containing both square() and squareplot().
You’d import them and then call square.square() and square.squareplot(). If you
did it this way, the other function asked for would not be appropriate for this module, and you’d

1



have to put it in a separate file (which is fine). Or, name it something like hw3funcs.py and put
everything in it. Just make the name somehow categorize the functions in the file.

Keep your main homework file under Git in a local repository (not on GitHub or another
internet archive). This will require you to execute git commands in the shell and to store the
output. Record these commands and their output in your log for this assignment. (Copying the
output there is not required for future assignments.) This may be a messy process as you learn.
That’s ok. The log is not a work of art.

1. Write a function called square that returns the square of its input (which may be a scalar
or an array of any dimension or numerical type).

(a) (2 points) Copy the template in module_template_with_docstring.py to
create your function file. Edit out anything extraneous.

(b) (4 points) Create a local Git repository and check the function file into it. Record the
shell command in your log.

(c) (4 points) Document the function following the template as well as you can. Be sure to
include an example! Check that into Git and record the shell command in your log.

(d) (4 points) Write the function code. Test and iterate until it works. Check that into Git
and record the shell command in your log.

(e) (4 points) Update the example and docs. Confirm that the function does what this as-
signment asks, that the docs and example are consistent with that, and that the example
says exactly what Python produces. Check that into Git. Print the Git log for the file,
recording the shell command and output in your log.

(f) (2 points) Create an array with the integers from 0-9, square them with your function,
and print the result.

2. (20 points) Write a function called squareplot that plots the squares of numbers using
your function from Problem 1. It should have three positional arguments: the low end of
the range, the high end of the range (inclusive!), and the number of points to plot over the
range. It should have one optional argument, savename=False. The points in your plot
should be evenly spaced. The function should call the function in Problem 1 exactly once.
The horizontal and vertical axes should be labeled “Input” and “Output”, respectively, and
the title should be “Square Function”. Again, document the function, include an example in
the documentation, and check your function into Git as soon as you have a file and several
times as you write it, including the final version. If savename is not False, the function
should save the plot image as PNG or PDF (according to the name) in the file name given
by savename. In the main homework file, give a command line to plot the squares of only
the numbers 1, 2.5, 4, 5.5, and 7 using this function, and save to an appropriate name (see
homework+coding.pdf). Print the Git log for the file and record it in your log.

3. (10 points) List the resources (books, web sites, etc.) that you have used to learn Python.
Give full publication and URL reference information. Critique each in a paragraph (how has
it helped you, what is the level, what is it good/bad at, etc.). If you have used more than
two, pick the best, or favor those not included in the course materials and recommendations.
Doing more than two is ok but you don’t have to.

2



4. (10 points) Write a function that implements the linear scaling given in class:

A′
ij = 255× Aij − min(A)

max(A)− min(A)
(1)

It should take a floating array and return an array of 8-bit, unsigned integers of the same
shape. (See demo for NumPy data types and sizes, converting types, etc. Beware of the
deceptively named bytearray() function! It does something unrelated.) Print the Git
log for the file and record it in your log.

5. (10 points) Read pix.fits from the Astro tutorial examples directory (see lecture demo #5
and Files/python/doc/pydatatut/examples/pix.fits). Scale it with your
routine. Put it on screen USING MATPLOTLIB (not ds9). Annotate the image by placing
your name completely within the image boundary. Be sure the lower-left corner is 0,0 and
that you have axis labels and a title. Produce a PNG file with the result.

6. (10 points) Include a copy of your class log file in your handin. Print the Git log for your
main homework file.

3


