
UNIVERSITY OF CENTRAL FLORIDA

Transit Users Manual

A RADIATIVE-TRANSFER CODE FOR PLANETARY
ATMOSPHERES

Authors:
Patricio CUBILLOS

Jasmina BLECIC

Supervisor:
Dr. Joseph HARRINGTON

November 18, 2020

Contents
1 Team Members 3

2 Introduction 3
2.1 Transit Package Overview . 3
2.2 License . 5

3 Installation 6
3.1 System Requirements . 6
3.2 Install and Compile . 6

4 Quick Example 7

5 Quick Walkthrough 7

6 Program Inputs 8
6.1 Pylineread . 8

6.1.1 Pylineread Command-Line Arguments 9
6.1.2 Configuration File . 9
6.1.3 Opacity Line-List Files . 11
6.1.4 Partition-Function Files . 11
6.1.5 HITRAN Data File . 11

6.2 Transit . 12
6.2.1 Transit Command-Line Arguments . 12

6.2.1.1 Spectrum Wavenumber Sampling 16
6.2.1.2 Atmospheric-Layer Sampling 17
6.2.1.3 Extinction-Coefficient Calculation 17
6.2.1.4 Line-by-Line Calculation . 17
6.2.1.5 Voigt-Profile Calculation . 17
6.2.1.6 Cloud Opacity . 18

6.2.2 Configuration File . 18
6.2.3 Atmospheric File . 20
6.2.4 Transit Line Information (TLI) File . 20
6.2.5 Cross-section File . 21
6.2.6 Opacity File . 21
6.2.7 Molecules Data File . 21

7 Program Outputs 22
7.1 Pylineread Output . 22
7.2 Transit Output . 22

7.2.1 Opacity File . 22
7.2.2 Flux Spectrum File . 23
7.2.3 Intensity Spectrum File . 23
7.2.4 Sampling Information File . 23
7.2.5 Max Optical-Depth File . 24

1

8 Running Transit 24
8.1 Running Pylineread . 24
8.2 Running Transit . 25
8.3 Utilizing Shared Memory . 25

8.3.1 System Requirements . 25
8.3.2 Size Allowances . 25
8.3.3 Cleaning Up . 26

9 Code Organization 27
9.1 TLI File Format . 27

9.1.1 Opacity File Format . 28

10 Routines 28
10.1 Pylineread Module . 28
10.2 Transit Module . 29
10.3 PU Module . 30

11 Be Kind 30

12 Reproducible Research 31

13 Further Reading 31

2

1 Team Members
• Patricio Cubillos1, University of Central Florida (pcubillos@fulbrightmail.org).

• Jasmina Blecic, University of Central Florida (jasmina@physics.ucf.edu).

• Joseph Harrington, University of Central Florida (jh@physics.ucf.edu).

• Madison Stemm, University of Central Florida (email@email.com).

• Andrew S. D. Foster, University of Central Florida (andrew.scott.foster@gmail.com).

• Patricio M. Rojo, Universidad de Chile (pato@oan.uchile.cl).

2 Introduction
This document2 describes the University of Central Florida’s computer program Transit. The
program calculates the transmission or emission flux spectrum of a planetary atmosphere with
application to extrasolar-planet transit and eclipse observations, respectively. Transit calculates
the spectra by solving for 1-dimensional line-by-line radiative-transfer equation for a plane-parallel
atmospheric model. A separate document (FINDME: point to file) describes in detail the theory
and assumptions adopted by Transit.

This manual describes the Transit program usage for the user (Sections 3 through 8) and
potential developer (Sections 9-10). Section 3 indicates how to obtain the code and the system
requirements. Section 6 describes the inputs necessary for execution. Section 7 describes the
output files produced by the code. Section 8 show an example execution of the code. Sections 9
and 10 details the data structures and routines, respectively.

2.1 Transit Package Overview
Transit is a C code, written in a modular, object-oriented style. It was originally developed at
Cornell University by Patricio Rojo, a former Ph.D. student of Dr. Joseph Harrington. The code
handled the case of transmission spectrum, where stellar light is absorbed as it travels tangentially
across the limb of a planetary atmosphere, as observed during an exoplanet transit observation.
Subsequently, we —the exoplanet group at the University of Central Florida— have modified the
code to add planetary emission spectra calculation (as observed during a secondary-eclipse ob-
servation), include multiple opacity line lists, and incorporate it to the Bayesian Atmospheric Ra-
diative Transfer (BART3) project, which constrains exoplanet atmospheric properties in a Bayesian
framework, given a set of eclipse or transit-depth measurements.
BART combines Transit with the Thermochemical Equilibrium Abundances (TEA4) module,

which calculates abundances of gaseous species, and the Multi-Core Markov-chain Monte Carlo
(MCcubed5) statistical module, which assesses the temperature and molecular-abundances posterior
distributions, given a set of observations.

1https://github.com/pcubillos/
2Most recent version of the manual available at https://exosports.github.io/transit/doc/Transit User Manual.html
3github.com/joeharr4/BART
4github.com/dzesmin/TEA
5github.com/pcubillos/MCcubed

3

https://github.com/pcubillos/
https://github.com/joeharr4/BART
https://github.com/dzesmin/TEA
https://github.com/pcubillos/MCcubed
https://exosports.github.io/transit/doc/Transit_User_Manual.html

The current Transit package consists of three main modules: Transit (FINDME: change
name to RT), a C module that calculates the emission or transmission spectrum for a planetary
atmosphere by solving the radiative-transfer equation. pu, a library of C utility functions used by
Transit. Pylineread, a Python module that converts molecular line-opacity information (line
transitions and partition functions) from online-available databases into the transit line information
(TLI) format for later use by Transit.

The Transit module is organized as follow:
transit

transit
src
include

pylineread
src
inputs
examples

pu
src
include

run
examples
doc

4

2.2 License
Transit, a code to solve for the radiative-transfer equation for planetary atmospheres.

This project was completed with the support of the NASA Planetary Atmospheres Program,
grant NNX12AI69G, held by Principal Investigator Joseph Harrington. Principal developers in-
cluded graduate students Patricio E. Cubillos and Jasmina Blecic, programmer Madison Stemm,
and undergraduate Andrew S. D. Foster. The included ’transit’ radiative transfer code is based on
an earlier program of the same name written by Patricio Rojo (Univ. de Chile, Santiago) when he
was a graduate student at Cornell University under Joseph Harrington.

Copyright (C) 2014 University of Central Florida. All rights reserved.

This is a test version only, and may not be redistributed to any third party. Please refer such
requests to us. This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

Our intent is to release this software under an open-source, reproducible-research license, once
the code is mature and the first research paper describing the code has been accepted for publica-
tion in a peer-reviewed journal. We are committed to development in the open, and have posted
this code on github.com so that others can test it and give us feedback. However, until its first pub-
lication and first stable release, we do not permit others to redistribute the code in either original
or modified form, nor to publish work based in whole or in part on the output of this code. By
downloading, running, or modifying this code, you agree to these conditions. We do encourage
sharing any modifications with us and discussing them openly.

We welcome your feedback, but do not guarantee support. Please send feedback or inquiries to:

Patricio Cubillos <pcubillos[at]fulbrightmail.org>
Jasmina Blecic <jasmina[at]physics.ucf.edu>
Joseph Harrington <jh[at]physics.ucf.edu>

or alternatively,

Joseph Harrington, Patricio Cubillos, and Jasmina Blecic
UCF PSB 441
4111 Libra Drive
Orlando, FL 32816-2385
USA

Thank you for using transit!

5

3 Installation

3.1 System Requirements
At this time, Transit requires a Unix environment with several software dependencies:

• Python version 2.7. This code has not yet been tested with Python 3.

– NumPy version 1.8.2+ (project homepage)
– SciPy version 0.13.3+ (project homepage)
– matplotlib version 1.3.1+ (project homepage)
– mpi4py version 1.3.1+ (installation page)

• MPI (MPICH preferred)

• GCC/Make or compatible build tools

• GSL (FINDME: give specifics).
• System V IPC support for use with the --shareOpacity flag (see 8.3)

For reference, Transit was developed on a Unix/Linux machine using Python 2.7.6, Numpy
1.8.2, and mpi4py 1.3.1. We have not yet tested the code against earlier releases of the dependen-
cies. If you find that it works with an earlier version, please let us know!

3.2 Install and Compile
To obtain the Transit code download the latest stable version from the releases6 page. Alter-
natively, clone the repository to your local machine with the following terminal commands. First,
create a working directory to place the code:
cd
mkdir tmp/
mkdir tmp/transit demo
cd tmp/transit demo

Clone the repository to your working directory:
git clone https://github.com/exosports/transit transit

Compile the pu and transit code, as well as the pylineread TIPS code:
cd transit
make

To remove the program binaries, execute:
make clean

Note that there will be warnings.

6github.com/exosports/transit/releases

6

http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.org/
http://mpi4py.scipy.org/docs/usrman/install.html
https://github.com/exosports/transit/releases

4 Quick Example
The following script quickly lets you calculate a methane emssion spectrum from the terminal. To
start, follow the instructions in Section 3.2 to install and compile the code. Now, create a working
directory to place the files and execute the programs:
cd
cd tmp/transit demo/
mkdir run/
cd run/

Download the methane line-transition database from the HITRAN server:
wget �user=HITRAN �password=getdata -N https://www.cfa.harvard.edu/HITRAN/HITRAN2012/HITRAN2012/By-Molecule/Compressed-files/06 hit12.zip
unzip 06 hit12.zip

Copy the pylineread configuration file to the run directory and execute pylineread to generate
the transition-line-information file:
cp ../transit/pylineread/examples/demo/pyline demo.cfg .
../transit/pylineread/src/pylineread.py -c pyline demo.cfg

Copy the Transit configuration file to the run directory and execute Transit to compute the spec-
trum:
cp ../transit/transit/examples/demo/transit demo.cfg .
../transit/transit/transit -c transit demo.cfg

To check out the results, run this Python script to generate the plot in Figure 1:

import matplotlib.pyplot as plt

import sys

sys.path.append("../transit/scripts/")

import readtransit as rt

wlength, flux = rt.readspectrum("CH4 demo spectrum.dat.−Flux", 0)

plt.figure(0, (8,5))

plt.clf()

plt.title("Methane Emission Spectrum")

plt.plot(wlength, flux, "b")

plt.xlabel("Wavelength (um)")

plt.ylabel("Flux (erg s−1 cm−1)")
plt.show()

5 Quick Walkthrough
Transit consists of three packages — pylineread, transit, and pu—. The pylineread and transit
packages provide the program executables to calculate an atmospheric spectrum, the pu package
provides utility functions for the transit package. The pylineread and transit programs allow for
command-line arguments or a configuration file (preferred) to configure the calculation specifics

7

(e.g, spectrum sampling boundaries, resolution, input and output file locations and names, ver-
bosity, etc).

The spectrum calculation is broken in two steps: first, pylineread processes species line-
transition information files (as downloaded from online databases), extract the necessary data,
and writes it to a binary transition-line-information (TLI) file. Then the transit program computes
the spectra for the given atmospheric model and species opacities.

The inputs for pylineread are (1) the line-transition database files of the species of interest, and
(2) their corresponding partition-function files. Pylineread outputs a binary TLI file with the line-
transitions’ wavelength, lower-state energy, oscillator strength, and isotpe index; and a tabulated
list of partition-function values as a function of temperature.

The inputs for transit are (1) an atmospheric file, (2) a TLI file (output from pylineread), (3)
one or more cross-section (CS) file, (4) a molecular information file, and optionally (5) an opacity
file. See section 6.2 for further details on the transit input files and their required formats.

The atmospheric file defines the atmospheric model, indicating the species present, and their
physical properties (radius, pressure, temperature, and species mole mixing ratio) given in a layer-
by-layer style. The input TLI file is the output from pylineread. The CS file is a tabulated list
of opacities as function of wavenumber and temperature. The molecular information file contains
additional species properties, is not expected to change (mass and collision diameter). This file is
provided by the Transit module. The optional opacity file provides a tabulated list of line-transition
opacities, as a function of temperature, pressure, and wavenumber, for each species. This file can
be computed by the transit prgram and further used as input to speed up the calculations (interpolate
instead of doing the line-by-line calculation).

The main output of the transit program is the atmospheric spectrum. For transit geometry,
transit computes the transmission spectrum, returning the modulation spectrum (Rp/Rs as function
of wavelength). For eclipse geometry, transit computes the emission intensity spectrum for a set
of incident angles, combining them to return a hemisphere integrated flux spectrum. Additional
(optional) outputs are (2) the opacity file (see above), (3) a ‘toomuch’ file with the layer at which
the optical deth reached a specified maximum threshold, (4) a sampling file with information on
the wavelength and layer sampling, and for eclipse geometry, (5) the intensity emission spectra as
a function of incident angle. See section 7.2 for further details on the output files.

6 Program Inputs
This Section describes the command-line arguments and input files required by the the Pylineread
and Transit modules, and any additional information needed to properly configure the modules.

6.1 Pylineread
The executable transit/pylineread/src/pylineread.py is the main Pylineread routine.
Pylineread runs from the shell taking a set of command-line arguments. Alternatively, the
command-line arguments can be specified using a configuration file. Before running Pylineread,
the user needs to obtain two types of input files: opacity line-list database files and partition-
function files.

8

6.1.1 Pylineread Command-Line Arguments

To display the complete list of command-line arguments, cd into the Pylineread source folder
(transit/pylineread/src) and execute:
./pylineread.py --help

Optional Arguments:
-h, --help

Show the help message and exit.

-c FILE, --config file FILE
Configuration filename (string).

-v VERB, --verbose-level VERB
Verbosity level (Integer) [default: 2].

-q, --quiet
Set verbosity level to 1.

Database Arguments:
-o OUTPUT, --output OUTPUT

Output TLI filename (string) [default: ’output.tli’].

-d DB LIST, --database DB LIST
Path (string) to the input line-transition database file(s).

-p PART LIST, --partition PART LIST
Path (string) to the auxiliary partition-function file(s).

-t DBTYPE, --dbtype DBTYPE
Database type (string). ’ps’ for Partridge & Schwenke’s H2O; ’hit’ for HITRAN and HITEMP;
or ’ts’ for Schwenke’s TiO.

Wavelength Arguments:
-i IWAV, --wav-init IWAV

Initial wavelength (microns) [default: 1.0].

-f FWAV, --wav-final FWAV
Final wavelength (microns) [default: 2.0].

6.1.2 Configuration File

A configuration file presents an alternative to the command-line arguments to specify the input
variables. The examples folder (transit/pylineread/examples/) provides a configuration-
file sample, pyline example.cfg, and is further explained below:

[Parameters]

Multiple−value arguments can be set separated either by a white space or
a line break.

9

This is the list (and source) of the currently supported Line Lists:

Partridge and Schwenke (H2O):

− http://kurucz.harvard.edu/molecules/h2o/h2ofastfix.bin
HITRAN and HITEMP:

− http://www.cfa.harvard.edu/hitran/
Schwenke (TiO):

− http://kurucz.harvard.edu/molecules/tio/tioschwenke.bin

With the correspoding partition functions:

− http://kurucz.harvard.edu/molecules/h2o/h2opartfn.dat
− Total Internal Partition Sums (TIPS) *
− http://kurucz.harvard.edu/molecules/tio/tiopart.dat
(*): Transit incorporates a modified version of the TIPS code

Path(s) to the database line lists:

(assuming that the user put the files in a databases folder)

db list = .../databases/Schwenke−H2O/h2ofastfix.bin
.../databases/HITEMP/CO2/02 2500−3000 HITEMP2010.par

Path(s) to the partition function files:

part list= .../databases/Schwenke−H2O/h2opartfn.dat
implicit

Type of each input database:

hit: HITRAN and HITEMP

ps: Partridge and Schwenke H2O

ts: Schwenke TiO

dbtype = ps hit

The output filename

output = PSandHIT 2.0−4.0um.tli

Initial wavelength in microns:

iwav = 2.0

Final wavelength in microns:

fwav = 4.0

Verbosity level (max number 20)

verb = 10

Pylineread’s configuration files follow the ConfigParser7 format. The [Parameters] line
defines the section read by ConfigParser. Multiple arguments can be separated either with blank
spaces or put in separated lines. The db list, part list, and dbtype arguments must have the same
number of values, and should be input in the corresponding order. We recommend that the output

7docs.python.org/2/library/configparser.html

10

https://docs.python.org/2/library/configparser.html

name carry a .tli extension.

6.1.3 Opacity Line-List Files

Table 1 lists the line-transition databases that are currently supported by pylineread and source
URLs so the user can obtain such files.

Table 1: Line-Transition Databases for Pylineread
Database Molecule URL

Partridge & Schwenke H2O kurucz.harvard.edu/molecules/h2o/h2ofastfix.bin
HITRAN H2O, CO2, cfa.harvard.edu/hitran

CH4, + others
HITEMP H2O, CO2, CO cfa.harvard.edu/hitran
Schwenke TiO kurucz.harvard.edu/molecules/tio/tioschwenke.bin

6.1.4 Partition-Function Files

Table 2 lists the partition-function files and source URLs for the databases listed in Table 1. For the
HITRAN and HITEMP databases, Pylineread provides a a modified version of the Total Internal
Partition Sums (TIPS, Laraia et al. 2011) code8, to calculate the partition functions.

Table 2: Partition-Function Data for Pylineread
Database Temperature URL

range (K)
Partridge & Schwenke 10-6000 kurucz.harvard.edu/molecules/h2o/h2opartfn.dat
HITRAN & HITEMP 70-3000 transit/pylineread/src/ctips

Schwenke 10-6000 kurucz.harvard.edu/molecules/tio/tiopart.dat

6.1.5 HITRAN Data File

The HITRAN data file, transit/pylineread/inputs/hitran.dat, is an additional file used
by Pylineread to obtain known physical properties of the species from the HTRAN and HITEMP
databases. This file is automatically read by Pylineread and, thus, does not need to be given as
an argument. There is also no need to modify this file by the user, as the information included does
not vary. The layout of the hitran.dat is given below:

ID: HITRAN molecule ID

Molecule: Molecule name

Iso: Isotope AFGL code

gi: State−independent Statistical weight
Iso ratio: Isotopic ratio

Iso mass: Isotopic mass (amu)

8faculty.uml.edu/robert gamache/software/index.htm

11

http://kurucz.harvard.edu/molecules/h2o/h2ofastfix.bin
http://cfa.harvard.edu/hitran/
http://cfa.harvard.edu/hitran
http://kurucz.harvard.edu/molecules/tio/tioschwenke.bin
http://kurucz.harvard.edu/molecules/h2o/h2opartfn.dat
http://kurucz.harvard.edu/molecules/tio/tiopart.dat
http://faculty.uml.edu/robert_gamache/software/index.htm

ID Molecule Iso gi Iso ratio Iso mass

1 H2O 161 1 9.973e−01 18.0105646

1 H2O 181 1 1.999e−03 20.014811

1 H2O 171 6 3.719e−04 19.014781

1 H2O 162 6 3.107e−04 19.016841

1 H2O 182 6 6.230e−07 21.021088

1 H2O 172 36 1.158e−07 20.021058

2 CO2 626 1 9.842e−01 43.98982920

2 CO2 636 2 1.106e−02 44.99318400

...

The first, second, and third columns are the molecular ID, molecule names, and isotope ID,
respectively, as given by the HITRAN database. The fourth column (gi) are the state-independent
statistical weights (from Fischer et al. 2003), the fifth column are the isotopic ratios (from Simeck-
ova et al. 2006), and the last column are the isotopic masses (calculated from Lide 2008).

6.2 Transit
The executable transit/transit/transit is the main Transit program. Transit runs
from the shell taking a set of command-line arguments. Alternatively, the command-line argu-
ments can be specified using a configuration file. Before running Transit, the user needs to
obtain three types of input files, an atmospheric file, transit-line information (TLI) files (created by
Pylineread), and cross-section (CS) files (e.g., for collision-induced absorption). Additionally,
Transit uses a molecules data file (included in the code). Lastly, an optional opacity file can be
used to provide a pre-calculated table of opacities (this file can be created by Transit itself).

6.2.1 Transit Command-Line Arguments

To display the complete list of command-line arguments, cd into the Transit source folder
(transit/transit) and execute:
./transit --help

General Options:
-h, --help

Display the list of command-line arguments.

-V, --version
Display Transit’s version number.

-q, --quiet
Set the verbosity level to the minimum.

-v, --verb=<verb>
Set the verbosity level (integer) to <verb>. [default: 2].

-c, --config file=<file>
Read command-line arguments from <file>.

12

Input/Output Options:
-o, --output=<outfile>

Output file to store the model spectrum. [default: Print to standard output].

--atm=<atmfile>
Input atmospheric info file.

--linedb=<linedb>
Input line information (TLI) file(s) (as given by ‘pylineread’).

--csfile=<filenames>
Input cross-section opacities file(s) (comma-separated list if more than one file).

--outtoomuch=<filename>
Ouput file to store the depth (as a function of wavelength) where the optical depth reached
‘toomuch’.

--outsample=<filename>
Output file to store the layer and wavenumber sampling information. A dash (-) indicates
standard input. [Default: NULL].
(FINDME: Standard input?)

--molfile=<filename>
Input file with the molecular information. [default: ../inputs/molecules.dat].

Radius Options:
--raddelt=<spacing>

Radius spacing. If set, resample the atmospheric layers to an equidistant sampling array.
[default: -1].

--radlow=<radius>
Lower radius. If 0, use atmospheric-file minimum. [default: 0].

--radhigh=<radius>
Higher radius. If 0, use atmospheric-file maximum. [default: 0].

--radfct=<factor>
Radius units conversion factor to cm. E.g., if the radii are given in m, then radfct=100. If 0,
use the atmospheric-file factor. [default: 0].

Atmospheric Options:
--allowq=<value>

Maximum allowed cumulative-abundance departure from 1.0. [default: 0.00001].

--refpress=<value>
Atmospheric pressure at the planet’s reference ‘surface’.

--refradius=<value>
Atmospheric radius at the planet’s reference ‘surface’.

--gsurf=<value>
Planetary surface (bulk) gravity (in cm/s2).

13

--qmol=<NULL>
List of molecule names to modify their abundace with qscale.

--qscale=<NULL>
log10-abundance scale factors for qmol molecules.

Wavelength-Array Options (in wlfct units):
--wllow=<wavel>

Lower wavelength boundary. [default: Minimum in TLI file].

--wlhigh=<wavel>
Upper wavelength boundary. [default: Maximum in TLI file].

--wlfct=<factor>
Wavelength units conversion factor to cm. E.g., for wavelengths given in microns, wlfct=1e-
4. [default: 1.0].

Wavenumber-Array Options (in wnfct units):
--wnlow=<waven>

Lower wavenumber boundary. [default: wavelength maximum boundary].

--wnhigh=<waven>
Upper wavenumber boundary. [default: wavelength minimum boundary].

--wndelt=<spacing>
Wavenumber array spacing. [default: 1].

--wnosamp=<Integer>
Wavenumber oversampling factor. [default: 2160 = 24 × 33 × 5].

--wnfct=<factor>
Wavenumber units conversion factor to cm−1. [default: 1.0].

Voigt Profile Calculation Options:
--ndop=<integer>

Number of Doppler-broadening width samples [default: 40].

--nlor=<integer>
Number of Doppler-broadening width samples [default: 40].

--dmin=<float>
Minimum Doppler-broadening width (in cm-1) [default: 1e-3].

--dmax=<float>
Maximum Doppler-broadening width (in cm-1) [default: 0.25].

--lmin=<float>
Minimum Lorentz-broadening width (in cm-1) [default: 1e-4].

--lmax=<float>
Maximum Lorentz-broadening width (in cm-1) [default: 10.0].

--nwidth=<number>

14

Number of the max-widths (the greater of Voigt or Doppler widths) that needs to be con-
tained in a calculated profile. [default: 20].

Extinction-Coeficcient Calculation Options:
--ethresh=<threshold>

Minimum extinction-coefficient ratio (w.r.t. maximum in a given layer) to consider in the
calculation. [default: 1e-8].

--cloudrad=<radup,raddown>
If set (in conjunction with cloudext), define a cloud layer (gray opacity component) where
a gray opacity component linearly increases from radup to raddown, where the opacity will
reach cloudext. From raddown below keep constant opacity. Use ’--cloudfct’ units; if not
defined, use radfct.

--cloudext=<extinction>
Maximum extinction of the cloud, which opacity will linearly increase from ’radup’ to ’rad-
down’.

--cloudfct=<factor>
Radius units conversion factor to cgs for --cloudrad.

--detailext=<filename:wn1,wn2,...>
Save extinction at specified wavenumbers in filename.

--detailcia=<filename:wn1,wn2,...>
Save CIA extinction at specified wavenumbers in filename.

--saveext=<filename>
Save extinction array in this file which won’t need to be recomputed if only the radius scale
(scale height) changes.

Opacity-Grid Options:
--opacityfile=<filename>

Filename to read/save the opacity grid.

--tlow=<temperature>
Lower temperature boundary for the opacity grid (in kelvin). [default: 500].

--thigh=<temperature>
Upper temperature boundary for the opacity grid [default: 3000].

--tempdelt=<spacing>
Temperature sample spacing (in Kelvin degrees). [default: 100.0].

--justOpacity=<boolean>
If set, end execution after the opacity-grid calculation.

--shareOpacity=<boolean>
If set, attempt to place the opacity grid into shared memory for use by other Transit processes
(see 8.3) [default: false].

Optical-Depth Options:

15

-s, --solution=<sol name>
Name of the kind of output solution (eclipse or transit). [default: eclipse].

--toomuch=<optdepth>
Maximum optical depth to calculate (at each wavenumber). [default: 20].

--taulevel=<integer>
Calculate the lightray path with a constant (1) or variable (2) index of refraction. [default:
1].
(FINDME: taulevel=1 is the only working option.)

--modlevel=<integer>
On the modulation calculation, If modlevel=1, do not consider limb darkening, if modlevel=-
1 do not consider limb darkening and additionally only returns the modulated radius at which
extinction becomes one. (default: 1).

--detailtau=<filename:wn1,wn2,..>
Save optical depth at specified wavenumbers in filename.

Geometry Options:
--starrad=<radius sun>

Stellar radius in solar radius. (default: 1.125).

--gorbpar=<smaxis,time,incl,ecc,long node,arg per>
Orbital parameters. Use the above order. Default: 1, 0, 0, 0, 0, 0.

--gorbparfct=<unitsof:smaxis,time,incl,ecc,long node,arg per>
Units convertion factors to the cgs system of the orbital parameters. Same order of g-orbpar.
Default: AU, hours, deg, 1, deg, deg.

--transparent
If selected, the planet will have a maximum optical depth given by toomuch, it will never be
totally opaque.

--raygrid=<(null)>
List of incident angles to calculate the emission intensity spectrum (default: 0 20 40 60 80).

(FINDME: re-word this:)
The next sub section describe how the CLA relate to the radiative transfer aspect/case/problem.

6.2.1.1 Spectrum Wavenumber Sampling

Internally, transit samples the spectrum in a equi-spaced wavenumber space, in CGS units.
However, the user can specify the spectrum boundaries either in wavenumber or wavelength. The
‘wnfct’ and ‘wlfct’ arguments allow the user to specify the units of the input wavenumber and
wavelength variables, respectively.

Transit implements a ‘dynamic’ wavenumber sampling, adjusting the sampling at each layer
to avoid oversampling or undersampling the line Voigt profiles, allowing for an efficient extinction
coefficient calculation at all layers (see Figure 2).

The ‘wndelt’ argument defines the ‘coarse’ sampling interval (∆νc), which is the sampling of
the output spectra. Together with the oversampling-factor argument, ‘wnosamp’, Transit defines

16

the ‘fine’ sampling interval as: ∆νf = wndelt / wnosamp. The dynamic sampling interval (∆νd)
lies between the fine and coarse sampling interval.

Initially, Transit pre-computes Voigt profiles, for a set of Lorentz and Doppler widths, over
the fine sampling. Then, these profiles are decimated to the dynamic sampling to calculate the
extinction coefficient. Lastly, the extinction coefficient is downsampled to the coarse sampling.
This requires that the dynamic sampling be an integer factor of the fine sampling (∆νd = f1∆νf ,
with f1 ∈ N), and the coarse sampling be an integer factor of the dynamical sampling (∆νc =
f2∆νd, with f2 ∈ N). Noting that wnosamp = f1f2, favorable values of wnosamp are thus numbers
with a large number of integer divisors.

The ‘resolv’ argument (FINDME: not implement yet) sets the minimum number of spectral
points to sample a profile’s HWHM, determining the dynamic sampling interval for each layer.
Given the wavenumber range and the layer’s temperature, pressure, and composition, Transit
calculates the thinnest HWHM (HWHMmin), then Transit selects the largest integer divisor of
‘wnosamp’ (dmax) that resolves HWHMmin:

∆νd = dmax ∆νf ≤
HWHMmin

resolv
. (1)

6.2.1.2 Atmospheric-Layer Sampling

By default, Transit uses the atmospheric file’s layer sampling. If the user sets the ‘raddelt’
argument, the layers will be resampled to an equi-spaced radius sampling. The radius boundaries
can also be redefined with the ‘radhigh’ and ‘radlow’ arguments.

6.2.1.3 Extinction-Coefficient Calculation

Transit has an option to calculate the extinction coefficient on the spot (line-by-line calculation)
for each layer, or interpolate from a pre-calculated table of opacities.

By setting the ‘opacityfile’ argument, the user chooses to interpolate from the specified
opacity table. If the file does not exist, Transitwill compute (and save) the extinction-coefficient
table over a grid of wavenumber, pressure, temperature, and species arrays. The wavenumber is
taken from the coarse wavenumber sampling. The pressure array is taken from the atmospheric
layers. The list of species will be taken from the TLI file. The temperature array will be computed
as a linear sample from ‘tlow’ to ‘thigh’ with sampling interval ‘tempdelt’. If the opacity
file exists, Transitwill check that the table’s wavenumber, pressure, and species list match those
specified by the command-line arguments.

Typical runtimes (for a 100-layers atmosphere, 5 million lines, from 3 to 11 µm) to calculate
a spectrum with an existing opacity file (interpolation), on the spot (line-by-line calculation), or to
generate the opacity file requires a few seconds, minutes, and hours, respectively.

6.2.1.4 Line-by-Line Calculation

The line-by-line calculation of the extinction coefficient (see the theory document) will only con-
sider the contribution from the lines which strength is larger than Smax× ethresh, with Smax the
maximum line-strength in a given layer.

6.2.1.5 Voigt-Profile Calculation

The Voigt profiles used in the line-by-line extinction-coefficient calculation are pre-calculated in
a 2D table for a range of Doppler and Lorentz widths. The Doppler range is a log-spaced sample

17

of ‘ndop’ widths from ‘dmin’ to ‘dmax’. Likewise, the Lorentz range is a log-spaced sample of
‘nlor’ widths from ‘lmin’ to ‘lmax’. The ‘nwidth’ argument indicates how far from the central
wavenumber (in number of profile half-widths) to calculate the Voigt profile.

6.2.1.6 Cloud Opacity

Transit allows for a basic gray-opacity (cloud) layer. The two values of ‘cloudrad’ define a the
top and bottom radii of a layer where the opacity linearly increasing from zero (at radup) up to
cloudext at raddown. Below this level, the opacity remains constant at cloudext.

6.2.2 Configuration File

A configuration file presents an alternative to the command-line arguments to specify the input
variables. The following example (transit/run/config sample.cfg) shows the format of a
basic transit configuration file, which is further explained below:

Transit Configuration File Example:

Comment (#) and empty lines are allowed.

To set an argument, write the argument name, followed by the

argument value (white−space separated). No need for the ’equal’

sign, nor quotes for string values.

For the full list of arguments see Transit User Guide or type: transit −h

:::::::::: Input files :::

Path to atmospheric info file:

atm /home/.../HD209458b atm.tea

Path to transit line information (TLI) file:

linedb /home/.../HITRAN CH4.tli

Path to cross−section (CS) file:
csfile /home/.../h2h2.dat

:::::::::: Spectrum sampling :::::::::::::::::::::::::::::::::::::

Lowest wavelength boundary (also can be set as the wavenumber

highest boundary with wnhigh):

wllow 2.8

Highest wavelength boundary (also can be set as the wavenumber

lowest boundary with wnlow):

wlhigh 11.0

Conversion factor from wavelength units to cm (default: 1e−4, microns):
wlfct 1e−4
Wavenumber sampling for plotting the final output (default: 1.0)

wndelt 1.0

Wavenumber over−sampling factor for internal calculations , see the User Guide
(default: 2160)

wnosamp 2160

Conversion factor from wavenumber units to cm−1 (default: 1.0):
wnfct 1.0

18

:::::::::: Geometry ::

Eclipse or transit (default: eclipse)

solution eclipse

Planetary grid for intensity calculation in degrees

(default: 0 20 40 60 80)

raygrid 0 20 40 60 80

:::::::::: Optical Depth ::

Maximum optical depth (default: 20)

toomuch 10

Opacity threshold , see the User Guide (default: 1e−6)
ethresh 1e−6

:::::::::: Broadening Function Calculation ::::::::::::::::::::

Number of HWHM left and right from the Voight profile centre

(default: 20)

nwidth 20

:::::::::: Opacity Grid Calculation :::::::::::::::::::::::::::::::

Lowest temperature boundary in K (default: 500)

tlow 500

Highest temperature boundary in K (default: 3000)

thigh 3000

Temperature sampling in K (default: 100)

tempdelt 100

Path to the opacity file

opacityfile ./opacity CH4.dat

:::::::::: Verbosity Level :::::::::::::::::::::::::::::::::::::::

Level of on−screen verbosity from 1−5 (default: 2)
verb 4

:::::::::: Output Files ::

Wavelength vs. radius where the optical depth reaches toomuch

outtoomuch ./eclipse toomuch.dat

Various sampling information

outsample ./eclipse sampling.dat

Final output spectrum, wavelength vs. flux

outflux ./eclipse spectrum.dat

Transit’s configuration file has its own format. Comment lines start with the # character.
When setting an argument–value pair, do not include the ‘equal’ sign in between. String values do
not need the quotation marks.

19

6.2.3 Atmospheric File

The atmospheric file is a plain text file that determines the species present in the atmosphere and the
physical properties of the atmospheric layers (pressure, radius, temperature, and mole mixing ratio
of the species) assuming a 1D plane-parallel model. See below (and transit/examples/example01/sample.atm
(FINDME: add file to repo) for an atmospheric file sample:

This is a sample atmospheric file for transit.

HD209458b

Values units: radius (km), pressure (bar), temperature (K),

abundances (unitless).

ur 1e5

up 1e6

q number

#SPECIES

H He C N O H2 CO CO2 CH4 H2O NH3 C2H2 C2H4

#TEADATA

Radius Pressure Temp H C ... C2H4

93102.145 1.0000e+02 1887 9.9917414e−01 2.6893119e−04 ... 9.5068e−09
96092.954 1.7783e+00 1839.85 9.9917414e−01 2.6893119e−04 ... 2.0976e−08
99008.753 3.1623e−02 1791.37 9.9917414e−01 2.6893119e−04 ... 2.2020e−08

...

101851.331 5.6234e−04 1744.45 9.9917414e−01 2.6893119e−04 ... 2.3203e−08
104638.705 1.0000e−05 1701.75 9.9917414e−01 2.6893119e−04 ... 2.4418e−08

The atmospheric file follows the following format: Blank and comment lines (starting with
the ‘#’ character) are allowed and ignored by transit. The ‘ur’ and ‘up’ keywords set the radius
and pressure units (conversion factors to CGS), respectively. For example, if the radii are given
in km (= 105 cm), set ‘ur 1e5’. The ‘q’ keyword indicate if the abundances are given by mass
or by number. The line after ‘#SPECIES’ lists the species in the atmosphere. The ‘#TEADATA’
line indicates where the atmospheric data per layer starts. The file contains one layer’s informa-
tion per line (in descending pressure order). Each line contains the radius, pressure, temperature,
and mole mixing ratio for each layer. The file can be produced using the BART routines (see
github.com/joeharr4/BART and documentation therein).

6.2.4 Transit Line Information (TLI) File

The TLI file is a binary file that provides the species’ line-transition information (central wave-
length, lower-state energy, and weighted oscillator strength), mass, isotopic ratio, and a tabulated
partition-function array as function of temperature for each one. The TLI file is the output of the
Pylineread module.

20

https://github.com/joeharr4/BART

6.2.5 Cross-section File

The cross-section files provide tabulated absorption data for Transit (e.g., for collision-induced ab-
sorption, CIA). CIA data can be obtained from Aleksandra Borysow’s webpage (astro.ku.dk/∼aborysow/programs/index.html).
See below (and transit/inputs/CIA H2H2 400-7000K.dat) for a CS file sample:

CIA Header for H2−H2:
i H2 H2

t 1000 2000 3000 4000 5000 6000 7000

Wavenumber in cm−1, CIA coefficients in cm−1 amagat−2:
20.00 0.467E−08 0.321E−08 0.283E−08 0.291E−08 0.319E−08 0.351E−08 0.386E−08
40.00 0.184E−07 0.127E−07 0.113E−07 0.116E−07 0.127E−07 0.140E−07 0.154E−07
60.00 0.402E−07 0.285E−07 0.253E−07 0.261E−07 0.286E−07 0.315E−07 0.347E−07
...

20000.00 0.269E−14 0.567E−12 0.597E−11 0.205E−10 0.382E−10 0.103E−09 0.144E−09

A valid CS file is a plain text file that contains a header and a main body. Comment lines
(starting with the ‘#’ character) and blank lines are allowed and ignored by Transit. The header
must contain two keyword arguments. A line starting with the ‘i’ keyword contains the name of
the species separated by blank spaces (names should match those from the atmospheric file). A line
starting with the ‘t’ keyword contains the list of temperatures (blank-space separated, in Kelvin
degrees) sampled in the CS file.

The body of the CS file contains a tabulated list with the absorption coefficients (in units of
cm−1 amagat−2 for CIA data, or cm−1 amagat−1 for line-transition data) evaluated as a function of
wavenumber (in units of cm−1) and temperature. Each line contains the wavenumber (first column)
and the coefficient corresponding to the temperatures specified in the header (values blank-space
separated).

6.2.6 Opacity File

The opacity file is a binary file that contains a tabulated grid of extinction coefficients as function
of wavenumber, for each species with a line list, and for a range of pressures and temperatures.
If specified, Transit will use this table to interpolate the extinction coefficient at the tempera-
tures given by the atmospheric profile. The opacity- and atmospheric-file’s pressure arrays must
coincide. Likewise, the transit and the opacity-file’s wavenumber arrays must also coincide.
Similarly, all species in the TLI file must be contained in the opacity file. See Section 6.2.1.3.

6.2.7 Molecules Data File

The molecules data file (transit/develop/inputs/molecules.dat) defines a univer-
sal ID, the mass, and the (collision) diameter for the species in the atmosphere. The layout of the
molecules.dat file is given below:

Molecular info:

Radii sources:

01 http://chem.chem.rochester.edu/~nvd/molecularsieves.html

21

http://www.astro.ku.dk/~aborysow/programs/index.html

02 Mateucci et al. (2006)

03 http://www.webelements.com/compounds (from density and mass calculation)

04 Wolfram Alpha + Wikipedia

05 http://www.chemspider.com/Molecular−Formula/C2H2
Mass source: http://www.webqc.org/mmcalc.php

ID Molecule Mass Diameter Diameter Long

Name g/mol Angstrom source name

101 H2O 18.01528 3.2 01 Water

102 CH4 16.0425 4.0 01 Methane

103 CO 28.0101 2.8 01 Carbon Monoxide

104 CO2 44.0095 2.8 01 Carbon Dioxide

105 H2 2.01588 2.89 02 Molecular Helium

106 NH3 17.03052 3.6 01 Ammonia

107 TiO 63.8664 3.45 03 Titanium Monoxide

108 VO 66.94090 3.32 03 Vanadium Monoxide

109 O2 31.99880 3.46 02 Molecular Oxygen

110 N2 28.01340 3.64 02 Molecular Nitrogen

111 C2H2 26.0373 5.26 05 Acetylene

112 C2H4 28.0532 5.69 05 Ethylene

113 HCN 27.02534 5.0 05 Hydrogen Cyanide

1 H 1.007940 2.4 01 Hydrogen

2 He 4.0026020 2.0 01 Helium

6 C 12.0107 1.7 04 Carbon

7 N 14.0067 1.55 04 Nitrogen

8 O 15.9994 1.52 04 Oxygen

11 Na 22.98976928 3.72 04 Sodium

19 K 39.09830 4.54 04 Potassium

7 Program Outputs

7.1 Pylineread Output
The output of the Pylineread module is a TLI file, described in Section 6.2.4.

7.2 Transit Output
The Transit module produces up to five output files: the opacity, the flux spectrum, the intensity
spectrum, the sampling information, and the max optical-depth files.

7.2.1 Opacity File

See Section 6.2.6.

22

7.2.2 Flux Spectrum File

This file contains the calculated modulation (transit geometry) or hemisphere-integrated emission
(eclipse geometry) spectrum. The first column shows the wavelength (in µm) and the second
column the spectrum (unitless for transit, erg s−1cm−1 for eclipse). The following example shows
this file’s layout for an eclipse run:

#wvl [um] Flux [erg/s/cm]

11 50317.47

10.9879133 44824.9485

10.97585312 41507.0681

... ...

... ...

(FINDME: change -Flux to something more reasonable).

7.2.3 Intensity Spectrum File

This file contains the calculated intensity spectrum at each incident angle (for eclipse geometry).
The first column has the wavelength (in µm) and the subsequent columns the planetary emission
intensity (in erg s−1cm−1sr−1) for each of the angles specified by the ‘raygrid’ argument. The
following example shows the layout of this file:

#wvl [um] I[0.0 deg] I[30.0 deg] I[60.0 deg] I[80.0 deg] [erg/s/cm/sr]

11 16020.5901 16020.4135 16019.3219 16016.2266

10.9879 14731.1128 14682.3188 14512.7771 14116.6959

...

...

7.2.4 Sampling Information File

This file stores the wavenumber, radius, and impact parameter sampling information. Each sam-
pling shows the conversion factor to cgs units, the initial and final sampling values, the spacing
interval between samples, the number of elements, the wavenumber sampling’s oversample factor,
and the radius sampling’s list of values for radius. The following example shows the layout of this
file:

############################

Wavenumber Sampling

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Factor to cgs units: 1

Initial value: 909.091

Final value: 3571.43

Spacing: 1

Oversample: 1

Number of elements: 2663

############################

23

Radius Sampling

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Factor to cgs units: 100000

Initial value: 123453

Final value: 140707

Spacing: 100

Number of elements: 173

Values: 123452.85 123552.85

... ...

... ...

############################

Impact parameter Sampling

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Factor to cgs units: 100000

Initial value: 140653

Final value: 123453

Spacing: −100
Oversample: 1

Number of elements: 173

Values: 140652.85 140552.85

... ...

... ...

7.2.5 Max Optical-Depth File

This file contains the atmospheric layer’s radius where the optical depth reached toomuch, as a
function of wavelength. The following example shows the layout of this file:

#Wavenumber (cm−1) Radius at max. calculated depth (cm)

909.0909091 13555285300

910.0909091 13095285300

... ...

... ...

(FINDME: change wavenumber to wavelength)

8 Running Transit

8.1 Running Pylineread
We strongly suggest the use a configuration file to specify the command-line arguments. In that
way, the user has a record of the arguments used to create the TLI files. The example provided in
transit/pylineread/examples/ is further described in Section 6.1.2.
Pylineread can be run from any folder, provided the user gives the path from the working

folder to the executable. We recommend to create a folder exclusively to execute Pylineread and

24

hold its results. For example, to run Pylineread from a folder located in transit/pylineread/TLI/
using a configuration file, cd into transit/pylineread/ and execute from the shell:
mkdir TLI
cd TLI/
cp ../examples/pyline example.cfg pyline run 01.cfg
(Edit the configuration file arguments following the format from Section 6.1.2)
../src/pylineread.py -c pyline run 01.cfg

8.2 Running Transit
Transit runs in the same way as Pylineread. Thus, the same recommendations from Section
8.1 apply. Although Transit has many command-line arguments, in most cases, most of them
can be left as defaults. A minimal example is given in transit/run/transit example.cfg.
For example, to run Transit using a configuration file from the transit/run/ folder, cd into
that folder and execute from the shell:
cp config sample.cfg transit run 01.cfg
(Edit the configuration file arguments following the format from Section 6.2.2)
../transit/transit -c transit run 01.cfg

8.3 Utilizing Shared Memory
Transit optionally utilizes IPC shared memory to store the opacity grid (see 6.2.1.3). This is
useful when multiple Transit processes are running with the same opacityFile.

8.3.1 System Requirements

There are numerous system requirements related to the use of shared memory:

• System V Interprocess Communication (IPC) support. This can be found on most modern
distributions of Linux, as well as Mac OS X.

• Presence of sys/ipc.h and sys/shm.h system libraries.

• Sufficient size allowances by the OS (see below).

8.3.2 Size Allowances

The operating system places restrictions on the total amount of shared memory that may be used
by one process and by all processes together. Prior to running Transit with shared memory,
please consider the following:

To check the current size allowances (reported in bytes):

On Linux:
cat /proc/sys/kernel/shmmax
cat /proc/sys/kernel/shmall

25

On Mac OS X:
sysctl -h kern.sysv.shmmax
sysctl -h kern.sysv.shmall

To temporarily set the current size allowances (until next reboot):

On Linux:
[sudo] echo [size in bytes] > /proc/sys/kernel/shmmax
[sudo] echo [size in bytes] > /proc/sys/kernel/shmall

On Mac OS X:
[sudo] sysctl -h kern.sysv.shmmax=[size in bytes]
[sudo] sysctl -h kern.sysv.shmall=[size in bytes]

To set the size allowances automatically (after reboot):

On Linux, add the following lines to /etc/sysctl.conf:
kernel.shmmax=[size in bytes]
kernel.shmall=[size in bytes]

On Max OS X, add the following lines to /etc/sysctl.conf:
kern.sysv.shmmax=[size in bytes]
kern.sysv.shmall=[size in bytes]

8.3.3 Cleaning Up

Transit marks its shared memory segments for destruction as soon as possible to avoid cases in
which segments remain reserved after the program completes. However, it is possible that a Transit
process that is interrupted at exactly the wrong moment will leave behind a segment of memory.
Because shared memory is reserved by the system, and not any specific process, it will remain
unusable until the system reboots.

You can manually check for and remove shared memory segments if you suspect that segments
have been left behind:

To check for segments:

On Linux:
ipcs -m

On Mac OS X:
ipcs -am

It is common to have several shared memory segments reserved during typical use of your
computer. Because of this, identifying segments that belong Transit is not always trivial. You can
narrow down the search by considering the user running Transit, the number of Transit processes

26

using the given opacity file, and the size of the segments: for each opacity file, Transit will reserve
one segment of several dozen (48) bytes to hold meta information and a larger segment (approxi-
mately the size of the opacity file) to hold the opacity grid.

To remove a segment using its ID:

On Linux and Mac OS X:
ipcrm -m [id]

9 Code Organization
(FINDME: TBD)

9.1 TLI File Format
The data listed in a TLI file, in order as they appear, are listed below:

1. Magic number (endianness)

2. TLI version (short)

3. Line reader version (short)

4. Line reader revision version (short)

5. Initial and final wavelength (doubles)

6. Number of databases (short)

7. For each database:

• Length (short) and name (string) of the database
• Length (short) and name (string) of the molecule
• Number of temperature samples (short)
• Number of isotopes (short)
• Temperature array (doubles)
• For each isotope:

– Length (short) and name (string) of the isotope
– Mass of the isotope (double)
– Isotopic ratio (double)
– Partition function at each temperature (doubles)

8. Line transition information:

• Number of transitions (int)
• Transition’s wavelength array (doubles)
• Transition’s isotope ID array (shorts)
• Transition’s lower-state energy array (doubles)
• Transition’s oscillator strength (gf) array (doubles)

27

9.1.1 Opacity File Format

The opacity file is a binary file that contains a tabulated grid of extinction coefficients as function
of wavenumber, for each species with a line list, and for a range of pressures and temperatures.

The data stored in the opacity file are:

• Number of species (integer)

• Number of temperature samples (integer)

• Number of pressure-layer samples (integer)

• Number of wavenumber samples (integer)

• Species ID (array of integers)

• Temperature sample (array of floats)

• Layer’s pressure (array of floats)

• Wavenumber array (array of floats)

• Extinction-coefficient (array of floats)

10 Routines
(FINDME: TBD)

10.1 Pylineread Module
(FINDME: TBD)

pylineread routines (transit/pylineread/src/):
pylineread.py:

(FINDME: Explain me). (*)

driver.py:
(FINDME: Explain me).

db pands.py:
(FINDME: Explain me).

db voplez.py:
(FINDME: Explain me).

db hitran.py:
(FINDME: Explain me).

db tioschwenke.py:
(FINDME: Explain me).

utils.py:
(FINDME: Explain me).

constants.py:
(FINDME: Explain me).

(FINDME: Replace with CTIPS information.) Fortran routines (transit/pylineread/src/fortran/):
BART BD ISO 82 TO 85.for:

28

(FINDME: Explain me).
BD ISO 2011.for:

(FINDME: Explain me).
BD MOL 2011.for:

(FINDME: Explain me).
ISOTOPS.CMN:

(FINDME: Explain me).
MOLEC.CMN:

(FINDME: Explain me).
README TIPS:

(FINDME: Explain me).
SPECIES 2011.CMN:

(FINDME: Explain me).
TIPS BART.for:

(FINDME: Explain me).

Asterisk (*) indicates files that must be executable.

10.2 Transit Module
(FINDME: TBD)

Transit routines (transit/transit/src/, in order of execution):
transit.c:

Main routine that calls the rest of the subroutines.

argum.c:
Read and process the user input parameters.

makesample.c:
Create the spectrum, layer, and temperature arrays.

readatm.c:
Read and process the input atmospheric file.

readlineinfo.c:
Read and process the input TLI (transition-lines information) file.

crosssec.c:
Read and process the cross-section absorption files.

idxrefraction.c:
Calculate the index of refraction of the ray-light path.

opacity.c:
Compute the line-broadening profiles and tabulated grid of opacities.

extinction.c:
Compute the extinction coefficient at a given layer.

tau.c:
Calculate the extinction coefficient at each layer for transit geometry.

29

slantpath.c:
Calculate the transit ray-path and integrated the extinction to calculate the optical depth.

observable.c:
Integrate the optical depth compute the transit modulation.

eclipse.c:
Compute the extinction coefficient and optical depth. Integrate the optical depth to calculate
the planet intensity. Integrate the intensity to obtain the planetary emission spectrum (flux).

transitstd.c:
(FINDME: Explain me).

geometry.c:
(FINDME: Explain me).

MPItransit.c:
Main transit routine for use with the BART project.

10.3 PU Module
pu routines (/transit/pu/src/):
iomisc.c:

(FINDME: Explain me).
numerical.c:

(FINDME: Explain me).
procopt.c:

(FINDME: Explain me).
voigt.c:

(FINDME: Explain me).
messagep.c:

(FINDME: Explain me).
sampling.c:

(FINDME: Explain me).
xmalloc.c:

(FINDME: Explain me).

11 Be Kind
Please cite these papers if you found this package useful for your research:

• Cubillos et al. (2015) (in preparation).

• Blecic et al. (2015) (in preparation).

• Harrington et al. (2015) (in preparation).

Thanks!

30

https://github.com/exosports/transit
https://github.com/dzesmin/
https://github.com/dzesmin/

12 Reproducible Research
(FINDME: TBD)

How to comply with reproducible research.
What to do if you do not edit the code. What to do if you edit the code.

13 Further Reading
(FINDME: TBD, do we need this section?)

31

2.0 2.5 3.0 3.5 4.0
Wavelength (um)

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

Fl
ux

 (
er

g
s-

1
cm

-1
)

Figure 1: Methane emission spectra.

32

1200 1350 1500 1650
Temperature (K)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

P
re
ss
u
re

(b
ar
)

10010-210-410-610-8

HWHM (cm−1)

Doppler

Lorentz

Voigt

Figure 2: Doppler and Lorentz half-width at half maximum (HWHM) line broadening for the water
molecule at 11 µm, for a H2/He-dominated atmosphere. Since the Lorentz profile width is proportional to
the pressure, the Voigt profile HWHM varies over several orders of magnitude between the top and bottom
of the atmosphere.

33

	1 Team Members
	2 Introduction
	2.1 Transit Package Overview
	2.2 License

	3 Installation
	3.1 System Requirements
	3.2 Install and Compile

	4 Quick Example
	5 Quick Walkthrough
	6 Program Inputs
	6.1 Pylineread
	6.1.1 Pylineread Command-Line Arguments
	6.1.2 Configuration File
	6.1.3 Opacity Line-List Files
	6.1.4 Partition-Function Files
	6.1.5 HITRAN Data File

	6.2 Transit
	6.2.1 Transit Command-Line Arguments
	6.2.1.1 Spectrum Wavenumber Sampling
	6.2.1.2 Atmospheric-Layer Sampling
	6.2.1.3 Extinction-Coefficient Calculation
	6.2.1.4 Line-by-Line Calculation
	6.2.1.5 Voigt-Profile Calculation
	6.2.1.6 Cloud Opacity

	6.2.2 Configuration File
	6.2.3 Atmospheric File
	6.2.4 Transit Line Information (TLI) File
	6.2.5 Cross-section File
	6.2.6 Opacity File
	6.2.7 Molecules Data File

	7 Program Outputs
	7.1 Pylineread Output
	7.2 Transit Output
	7.2.1 Opacity File
	7.2.2 Flux Spectrum File
	7.2.3 Intensity Spectrum File
	7.2.4 Sampling Information File
	7.2.5 Max Optical-Depth File

	8 Running Transit
	8.1 Running Pylineread
	8.2 Running Transit
	8.3 Utilizing Shared Memory
	8.3.1 System Requirements
	8.3.2 Size Allowances
	8.3.3 Cleaning Up

	9 Code Organization
	9.1 TLI File Format
	9.1.1 Opacity File Format

	10 Routines
	10.1 Pylineread Module
	10.2 Transit Module
	10.3 PU Module

	11 Be Kind
	12 Reproducible Research
	13 Further Reading

