UNIVERSITY OF CENTRAL FLORIDA

Transit Code Manual

A RADIATIVE-TRANSFER CODE FOR PLANETARY
ATMOSPHERES

Authors: Supervisor:

Ryan CHALLENER Dr. Joseph HARRINGTON
Patricio CUBILLOS

Jasmina BLECIC

November 18, 2020

Transit 1

1 Introduction

This document' is intended to provide the t ransit user with the information necessary to mod-
ify the code for their own uses. It describes all headers, custom variable types, structures, and
functions used within the t ransit program. We also include information about which functions
allocate, fill in, and free data arrays.

The t ransit program is structure-oriented. All the variables used by t ransit are held in
structures, as listed in Section 5. These structures are passed around to functions which allocate,
fill out, and free the variables within the structures. In Section 5 all arrays within the program are
cross-referenced with the functions that alter them.

The functions of t ransit are split into two chunks: initialization and calculation. The initial-
ization functions set up the variables and structures that are needed to make the radiative transfer
calculations. This includes parsing the configuration file, making sampling arrays, reading the in-
put files (line transition information, collision-induced absorption), and creating the opacity grid.
The calculation functions make the extinction and optical depth calculations, for both transit and
eclipse geometry, and create the output files. Figure 1 shows the function structure of transit.

In Section 2 we describe all the headers included in t ransit. Section 3 gives all the custom
variable types and their purpose. Then in Section 4 we list all the defined constants in transit.
Section 5 lists both the structures and structure types used, and makes note of which function alters
each array. In Section 6 we list all source files and functions, and provide a list of the variables
which are altered by each function along with a walkthrough of each major function. Finally,
Section 7 lists some equations that are important to the calculations made in transit.

"Most recent version of the manual available at https://exosports.github.io/transit/doc/Transit_Code_Manual.htm]

https://exosports.github.io/transit/doc/Transit_Code_Manual.html

Transit 2

Figure 1: transit function structure. The boxes contain function names, and arrows point from
a function to the function it calls. Functions are called from left to right, then top to bottom. For
example, at the beginning, transit_init calls processparameters, then transit_init calls acceptgen-
hints, then acceptgenhints calls acceptsoltype, and so on. Boxes are color-coded as follows: purple
functions are used for eclipse geometry, blue functions are used for transit geomtry, and green
functions are used in both. The shaded backgrounds indicate where each function can be found.

Transit

2 List of Headers used by transit

This section lists all headers included in the transit program. Those which are unique to
transit can be found in the transit/include/ directory. The file transit.h contains the lines which
include the rest of the headers.

Table 1: Headers

Name Description

transit.h Radius and wavelength indices

stdarg.h Record indices

math.h Partition-function data

errno.h Line-transition data

sys/types.h Partial result

sys/stat.h Atmospheric data

sts/time.h Cross-section data

unistd.h Collision-induced absorption data

sampling.h Voigt profile data type

profile.h Precise Voigt profile data type

iomisc.h Declares miscellaneous input/output functions
xmalloc.h Redefines malloc, realloc, calloc
strings.h Defines several string manipulation functions
stdlib.h Defines many general purpose functions
stdio.h Defines many general input/output functions
alloca.h Defines alloca, which allocates temporary memory
flags_tr.h Defines t ransit flags

constants_tr.h
types_tr.h

Defines t ransit constants (see Table 3)
Defines t ransit custom variable types (see Table 2)

Transit

3 List of Custom Variable Types in transit DONE

Table 2 lists the user-defined data types used in Transit. These declarations are located in transit/-

transit/include/types_tr.h.

Table 2: Custom Variable Types

Name Type

Description

PREC_NSAMP int
PREC_NREC long
PREC_ZREC double
PREC_LNDATA double
PREC_RES double
PREC_ATM double
PREC_CS double
PREC_VOIGT float
PREC_VOIGTP double

Radius and wavelength indices
Record indices
Partition-function data
Line-transition data

Partial result

Atmospheric data
Cross-section data

Voigt profile data type

Precise Voigt profile data type

Transit

4 List of Constants in transit DONE

Table 3 lists the user-defined constants used in t ransit. The definitions can be found in transit/-
transit/include/constants_tr.h.

Table 3: Constants

Name Value Description

RHOSTP 1.29¢-3 g cm™ Density at STP

PI 3.141592653589793 Pi

DEGREES P1/180.0 Radians per degree
GGRAV 6.673e-8 erg cm g° Gravitational constant
HOUR 3600.0 s Seconds per hour

AU 14959786896040.492 cm Centimeters per AU
ANGSTROM le-8 cm Centimeters per angstrom
SUNMASS 1.9891e33 g Mass of the sun
SUNRADIUS 6.95508e10 cm Radius of the sun

AMU 1.66053886e-24 g Grams per atomic mass unit
LO 2.686763e19 cm™ Loschmidt constant

EC 4.8032068e-10 statC Electron charge

LS 2.99792458e10 cm 57! Light speed

ME 9.1093897e-28 g Mass of an electron

KB 1.380658e-16 erg K'! Boltzmann constant

H 6.6260755e-27 erg s Planck constant

HC H*LS erg cm Planck constant x speed of light
SIGCTE (PI*EC?)/(LS**ME*AMU) cm g'1 Cross-section constant
EXPCTE (H*LS)/KB cm K Exponent constant
ONEOSQRT2PI 0.3989422804 1/sqrt(2pi)

SQRTLN2 0.83255461115769775635 sqrt(In(2))
MAXNAMELEN 20 Maximum length of name strings

Transit

5 List of Structures in the transit Files

5.1 Structure Types

Sampling properties of impact parameter, wavenumber, etc.

typedef struct {

PREC_NREC n; /* Number of elements %/
PREC_RES d; /% Spacing */
PREC_RES 1i; /% Initial value */
PREC_RES f; /% Final value */
int o; /% Oversampling */
PREC_RES *v; /% Values of the sampling */
/% ALLOCATED: getatm */
/% ALLOCATED: readatmfile */
/% FILLED OUT: readatmfile */
/* FILLED OUT: radpress */
/* FREED: freemem_samp */
double fct; /% v units factor to cgs */
} prop_samp;
Isotopes’ variable information.
typedef struct {
unsigned int n; /% Arrays’ length */
double *z; /% Partition function [radius or temp] */
/* ALLOCATED: readtli_bin */
/* FILLED OUT: readtli_bin */
/* FREED: free_isov
*/
} prop_isov;
Isotopes’ fixed information.
typedef struct {
int d; /* Database to which they belong */
char =*n; /% Isotope name */
PREC_ZREC m; /% Isotope mass */
} prop_isof;
Molecule properties.
typedef struct{
int n; /* Number of elements */
PREC_ATM =*d; /* Density [n] %/
/* ALLOCATED: getatm %/

Transit 7
/% ALLOCATED: readatmfile */
/* FILLED OUT: makeradsample */
/% FREED: free_mol */
PREC_ATM #*q; /* Abundance [n] %/
/% ALLOCATED: getatm */
/% ALLOCATED: readatmfile */
/* FILLED OUT: makeradsample */
/% FREED: free\,mol */
} prop_mol;
Atmosphere properties.
typedef struct {
double :mm; /* Mean molecular mass [rad] */
/* ALLOCATED: getatm */
/* ALLOCATED: readatmfile */
/* FILLED OUT: makeradsample */
/* FREED: free_atm */
PREC_ATM x*p; /* Pressure [rad] %/
/* ALLOCATED: getatm */
/* ALLOCATED: readatmfile */
/* FILLED OUT: makeradsample */
/% FREED: free_atm */
PREC_ATM *t; /% Temperature [rad] %/
/* ALLOCATED: getatm */
/* ALLOCATED: readatmfile */
/* FILLED OUT: makeradsample */
/* FREED: free_atm */
PREC_ATM pfct; /% p units factor to cgs (dyne/cm2) #*/
PREC_ATM tfct; /% t units factor to cgs (Kelvin) */
} prop_atm;
Database properties.
typedef struct {
char #*n; /* Database name %/
char *molname; /* Molecule name %/
unsigned int i; /% Number of isotopes */
int s; /% Cumulative first isotope’s index */
} prop_db;
Database temperatures.
typedef struct {
unsigned int t; /% Number of temperatures */

Transit

double *T; /% Temperatures */
/* ALLOCATED: readtli_bin */
/* FILLED OUT: readtli_bin */
/* FREED: free_dbnoext */
} prop_dbnoext;
Ray solution parameters and integrator functions.
typedef struct {
const char *name; /* Ray solution name */
const char *xfile; /% Ray solution source file */
const short monospace; /* Request equispaced inpact parameter? */
PREC_RES (*optdepth) /% Extinction—coefficient integrator function %/
(struct transit s*tr,
PREC_RES b, /% Height of ray path */
PREC_RES :kex); /% Extinction array [rad] */
PREC_RES (kspectrum) /% Optical—depth integrator function %/
(struct transit *tr,
PREC_RES x*tau, /% Optical depth */
PREC_RES w, /% Wavenumber value */
long last, /% index where tau exceeded toomuch */
PREC_RES toomuch, /% Cutoff optical depth */
prop_samp *r); /% Impact parameter or layers’ radius */
} ray_solution; transit.h:
5.2 Structures
Proportional-abundance isotopic parameters.
struct atm,isoprop{
double f; /% Fractional abundance */
double m; /* Isotope mass */
int eq; /% Isotope index from transit.ds.isotopes */
char n[maxeisoname]; /#* Isotope name %/
char t[maxeisoname]; /% Molecule name %/
}s
Line transition parameters
struct line transition{
PREC_LNDATA #*wl; /% Wavelength */
/% ALLOCATED: readdatarng */
/% FILLED OUT: readdatarng */
/* FREED: freemem_linetranstion */
PREC_LNDATA #*elow; /* Lower—state energy */

Transit

/% ALLOCATED: readdatarng */
/* FILLED OUT: readdatarng */
/* FREED: freemem_linetranstion */
PREC_LNDATA x*gf; /% gf value */
/% ALLOCATED: readdatarng */
/% FILLED OUT: readdatarng */
/* FREED: freemem_linetransition */
short *isoid; /% Isotope ID (Assumed to be in range) %/
/* ALLOCATED: readdatarng */
/% FILLED OUT: readdatarng */
/* FREED: freemem_linetransition */
double wfct; /% wl units factor to cgs */
double efct; /* elow units factor to cgs */
¥
Line information parameters
struct 1ineinfo{
struct line_transition 1lt; /* Line transitions */
unsigned short tli_ver; /% TLI version %/
unsigned short lr_ver; /% lineread version */
unsigned short lr_rev; /% lineread revision */
double wi, wf; /% Initial and final wavelength in database */
long endinfo; /* Position at the end of the info part
of the info file %/
int ni; /% Number of isotopes */
int ndb; /* Number of databases %/
prop_isov *isov; /% Variable isotope information (w/temp) [iso] */
/* ALLOCATED: readtli_bin */
/% FILLED OUT: readtli_bin %/
/% FREED: freemem_lineinfo %/
prop_dbnoext *db; /% Temperature info from databases [DB] */
/% ALLOCATED: readtli_bin */
/% FILLED OUT: readtli_bin */
/% FREED: freemem_lineinfo */
PREC_NREC n_1; /% Number of lines in database */
}s
Atmospheric data file parameters.
struct atm data{
int n_aiso; /% Number of molecules in atmosphere file %/
prop_samp rads; /% Radius sampling %/
prop_atm atm; /% Atmospheric properties */
prop_mol *molec; /% Molecular information [n_aiso] */
/* ALLOCATED: getatm %/

Transit 10
/* FILLED OUT: getmoldata, getmnfromfile */
/% FREED: free_mol */
double :mm; /* Mean molecular mass [rad] */
/* ALLOCATED: getatm */
/% ALLOCATED: readatmfile */
/* FILLED OUT: getmoldata */
/* FREED: freemem_atmosphere */
char *info; /% Optional atmosphere file information or 1label */
_Bool mass; /% Abundances in isov by mass (1) of by number (0) :*/
int begline; /% Line of first radius dependent info %/
long begpos; /* Position of first radius dependent info */
}s
Extinction array and extinction parameters.
struct extinction{
PREC_RES *xe; /% Extinction value [rad][wav] */
/* ALLOCATED: extwn */
/* FILLED OUT: computemolext, interpolmolext */
/* FREED: freemem_extinction */
int vf; /% Number of fine—bins of the Voigt function */
float ta; /% Number of alphas that have to be contained in
the profile %/
_Bool *xcomputed; /% Whether the extinction at the given radius was
computed [rad] */
/% ALLOCATED: extwn */
/* FILLED OUT: computemolext, interpolmolext */
/* FREED: freemem_extinction */
double ethresh; /% Lower extinction—coefficient threshold %/
¥
Opacity array and opacity parameters.
struct opacity{
PREC_RES sk*x%0; /% Opacity grid [temp][iso][rad][wav] */
/% ALLOCATED: calcopacity, readopacity %/
/% FILLED OUT: computemolext */
/* FREED: freemem_opacity */
PREC_VOIGT =*xx**profile; /% Voigt profiles [nDop][nLor][2#profsize+1] */
/* ALLOCATED: calcprofiles, getprofile */
/* FILLED OUT: getprofile */
/* FREED: freemem_opacity */
PREC_NREC x**profsize; /% Half—size of Voigt profiles [nDop][nLor] %/
/% ALLOCATED: calcprofiles */
/% FILLED OUT: getprofile */
/* FREED: freemem_opacity */

Transit 11
double =*aDop, /% Sample of Doppler widths [nDop] */
/* ALLOCATED: calcprofiles */
/* FILLED OUT: calcopacity */
/* FREED: freemem_opacity */
*alor; /% Sample of Lorentz widths [nLor] */
/% ALLOCATED: calcprofiles */
/* FILLED OUT: calcopacity */
/* FREED: freemem_opacity */
PREC_RES s*temp, /% Opacity—grid temperature array */
/* ALLOCATED: calcopacity */
/* FILLED OUT: calcopacity */
/% FREED: freemem_opacity */
kpress, /% Opacity—grid pressure array */
/* ALLOCATED: calcopacity */
/* FILLED OUT: calcopacity */
/* FREED: freemem_opacity */
*kwns ; /% Opacity—grid wavenumber array */
/* ALLOCATED: calcopacity */
/* FILLED OUT: calcopacity */
/* FREED: freemem_opacity */
PREC_ATM #*%*ziso; /% Partition function per isotope [niso][Ntemp] */
/% ALLOCATED: calcopacity */
/* FILLED OUT: calcopacity */
/* FREED: freemem_opacity */
int *molID; /% Opacity—grid molecule ID array */
/* ALLOCATED: calcopacity */
/% FILLED OUT: calcopacity */
/* FREED: freemem_opacity */
long Nwave, Ntemp, Nlayer, Nmol, /% Number of elements in opacity grid %/
nDop, nlLor; /% Number of Doppler and Lorentz—width samples */
}s
Index of refraction array.
struct idxref{
PREC_RES *n; /% Index of refraction [rad] */
/* ALLOCATED: idxrefrac */
/% FILLED OUT: idxrefrac */
/* FREED: freemem_idxrefrac */

}s

Save file information.

#if 0
struct savefiles {
char *xext; /% saves extinction */

Transit

char *tau;

char *modulation;

}s

#endif

/% after tau() savefile

*/

/% after modulation() savefile */

Optical depth array and related information.

struct optdepth{

PREC_RES *xt; /% Optical depth [wn][ip] */
/* ALLOCATED: init_optdepth */
/% FILLED OUT: tau */
/* FREED: freemem_tau */
long =*last; /% Level index where the optical depth reached toomuch
(counting from the top of the atmosphere) [wn] */
/* ALLOCATED: init_optdepth */
/% FILLED OUT: tau %/
/* FREED: freemem_tau */
double toomuch; /% Optical depth values greater than this won’t be
calculated: the extinction is assumed to be zero. */
¥
Intensity array.
struct grid{
PREC_RES *x*a; /% Intensity grid, 2D, [an][wnn] */
/* ALLOCATED: init_optdepth */
/% FILLED OUT: eclipse_intens */
/% FREED: freemem_intensityGrid */
¥
Information about the geometry of the transit or eclipse.
struct geometry{
float smaxis; /% Semimajor axis */
double smaxisfct; /% ’smaxis’ times this gives cgs units. %/
double time; /% this value is 0 when in the middle of the eclipse %/
double timefct; /* ’time’ times this gives cgs units */
float incl; /% inclination of the planetary orbit with respect
to the observer, 90 degrees is edge on */
float inclfct; /* Units to convert inclination to radians */
double ecc; /% eccentricty */
double eccfct; /* eccentricity’s units */
double 1node; /% longitude of the ascending node */
double 1lnodefct; /* longitude of the ascending node units */
double aper; /% argument of the pericenter */
double aperfct; /% argument of the pericenter units %/

Transit

double starmass; /* Mass of the star */
double starmassfct; /% ’starmass’ times this gives cgs units. %/
double starrad; /% Star’s radius */
double starradfct; /% ’starrad’ times this gives cgs units. */
double x, y; /% Coordinates of the center of the planet with
respect to the star. ’'fct’ to convert to cgs is
found in rads.fct. These fields are not hinted. */
_Bool transpplanet; /% If true, set maximum optical depth to toomuch */
¥
Isotope information.
struct isotopes{
prop_isof #*isof; /% Fixed isotope information [n_i] */
/* ALLOCATED: readtli_bin */
/* FILLED OUT: readtli_bin */
/* FREED: freemem_isotopes */
prop_isov #*isov; /% Variable isotope information [n_i] %/
/* ALLOCATED: readtli_bin */
/% FILLED OUT: readdatarng */
/% FREED: freemem_isotopes */
double s*isoratio; /% Isotopic abundance ratio [n_i] %/
/* ALLOCATED: readtli_bin */
/% FILLED OUT: readtli_bin */
/* FREED: freemem_isotopes */
int *imol; /% Molecule index for this isotope[n_i] */
/* ALLOCATED: readlineinfo */
/* FILLED OUT: setimol */
/* FREED: freemem_isotopes */
prop_db *db; /% Database’s info [n_db] */
/% ALLOCATED: readtli_bin */
/* FILLED OUT: readtli_bin */
/* FREED: freemem_isotopes */
int n_db, /% Number of databases %/
n_i, /% Number of isotopes */
nmol; /* Number of different molecules having a line list */
¥
Molecule information.
struct molecules{
int nmol; /% Number of molecules %/
prop_mol #*molec; /* Molecular properties */
/% ALLOCATED: getatm */
/* FILLED OUT: makeradsample */

Transit 14
/* FREED: free_mol */
char s#%name; /* Molecules’ names */
/* ALLOCATED: getmnfromfile */
/* FILLED OUT: getmnfromfile */
/* FREED: freemem_molecules */
PREC_ZREC #*mass; /% Molecules’ masses */
/* ALLOCATED: getatm */
/* FILLED OUT: getmoldata */
/* FREED: freemem_molecules */
PREC_ZREC =*radius; /% Molecules’ radii */
/* ALLOCATED: getatm */
/* FILLED OUT: getmoldata */
/* FREED: freemem_molecules */
int *ID; /% Molecule universal ID */
/* ALLOCATED: getatm */
/% FILLED OUT: getmoldata */
/* FREED: FINDME: this isn’t freed! */
Flux
struct outputray{
PREC_RES *o0; /% Output as seen before interaction with telescope */
/* ALLOCATED: flux, modulation */
/* FILLED OUT: flux, modulationl, moldulationml */
/* FREED: freemem_outputray */
Cloud extinction information.
struct extcloud{
double cloudext; /% Maximum opacity in [cm—1] %/
double cloudtop; /% Radius at which clouds start */
double cloudbot; /* Radius at which clouds has it maximum thickness
"cloudext’. */
Scattering extinction information.
struct extscat{
double prm;
Saved extinction grid name.
struct saves{
char *xext; /% Extinction grid */

}s

Transit

Stores requested extinction, optical depth, or CIA detailed information.

struct detailfld{

int n; /% Number of requested wavenumber samples 3/
PREC_RES *ref; /% Array of wavenumbers requested */
/* ALLOCATED: processparameters */
/* FILLED OUT: acceptgenhints */
/* FREED: freemem_detailfld */
char file[80]; /* Output filename */
char name[30]; /% Name of field */
}s
Detailed output for extinction, optical depth, or CIA.
struct detailout{
struct detailfld ext, tau, cia;
s
Cross-section extinction information.
struct cross{
int nfiles; /* Number of CS files */
PREC_CS xke; /% Extinction from all CS sources [wn][temp] %/
/% ALLOCATED: readcs */
/% FILLED OUT: interpolatecs */
/* FREED: freemem_cs */
PREC_CS s**%cs; /% Tabulated CS extinction [nfiles] [nwave][ntemp] */
/* ALLOCATED: readcs %/
/% FILLED OUT: readcs */
/* FREED: freemem_cs */
PREC_CS s*wn; /* Tabulated wavenumber arrays [nfiles][nwave] */
/* ALLOCATED: readcs */
/* FILLED OUT: readcs */
/* FREED: freemem_cs */
PREC_CS #**temp; /* Tabulated temperature arrays [nfiles][ntemp] */
/% ALLOCATED: readcs */
/* FILLED OUT: readcs */
/% FREED: freemem_cs %/
int s*knwave; /% Number of wavenumber samples [nfiles] */
/% ALLOCATED: readcs */
/% FILLED OUT: readcs */
/* FREED: freemem_cs */
int #ntemp; /% Number of temperature samples [nfiles] %/
/* ALLOCATED: readcs */
/% FILLED OUT: readcs */
/% FREED: freemem_cs */
int *moll, *mol2; /% Pairs of molecule’s ID [nfiles] */
/* ALLOCATED: readcs */

Transit 16

/% FILLED OUT: readcs */
/* FREED: freemem_cs */

}s

Structure containing all user-given information that is passed to the transit structure upon approval.

struct transithint{

char *f_atm, /% Atmosphere filename */
f_line, / TLI filename */
*f_opa, /% Opacity filename */
*f_out, /% Output (main) filename */
*f_toomuch, /% Output toomuch filename */
*f_outsample, /% Output sample filename */
f_molfile; / Known molecular info filename */
PREC_NREC ot; /* Radius index at which to print output from tau */
prop_samp rads, ips, /#* Sampling properties of radius, impact parameter, */
wavs, wns, temp; /% wavelength, wavenumber, and temperature %/
char =*angles; /% String with incident angles (for eclipse) %/
char #*qmol, *qscale; /% String with species scale factors */
float allowrg; /% How much less than one is accepted, and no warning
is issued if abundances don’t ad up to that */
float timesalpha; /* Number of alphas that have to be contained in a
calculated profile, one side only %/
int voigtfine; /% Fine—binning for Voigt function in kapwl(), if
accepted it goes to tr.ds.op.vf */
int nDop, nLor; /% Number of broadening width samples */
float dmin, dmax, 1lmin, 1lmax; /* Broadening—width samples boundaries %/
int verbnoise; /% Noisiest verbose level in a non debugging run %/
_Bool mass; /* Whether the abundances read by getatm are by
mass or number x/
_Bool opabreak; /% Break after opacity calculation flag %/
long f1; /% flags */
_Bool userefraction; /% Whether to use variable refraction %/
double p0®, r0; /* Pressure and radius reference level */
double gsurf; /% Surface gravity */
double toomuch; /% Optical depth values greater than this won’t be

calculated: the extinction is assumed to be zero */

int taulevel; /% Tau integration level of precision */
int modlevel; /% Modulation integration level of precision %/
char *solname; /* Name of the type of solution */
struct geometry sg; /% System geometry */
struct saves save; /% Saves indicator of program stats %/

struct extcloud cl;

struct detailout det;

Transit

17

double ethresh; /* Lower extinction—coefficient threshold */
char #xx%csfile;
int ncross;
}s
Main data structure.
struct transit{
char *f_atm, /% Atmosphere filename */
*f line, /% TLI filename */
*f_opa, /% Opacity filename */
*f_out, /% Output (main) filename */
*f_toomuch, /% Output toomuch filename */
*f_outsample, /# Output sample filename */
*f_ molfile; /% Known molecular info filename */
PREC_NREC ot; /% Radius index at which to print output from tau */
FILE #fp_atm, *fp_opa, *fp_out, #*fp_line; /* Pointers to files */
float allowrg; /% How much less than one is accepted, so that no warning
is issued if abundances don’t ad up to that */
PREC_RES telres; /% Telescope resolution */
long int anglelIndex; /* Index of the current angle */
prop_samp rads, /% Sampling properties of radius, */
/* ALLOCATED: makesample, makesamplel */
/% FILLED OUT: makeradsample */
/* FREED: freemem_samp */
ips, /% impact parameter, */
/* ALLOCATED: makesample, makesamplel %/
/% FILLED OUT: makeipsample */
/* FREED: freemem_samp */
owns , /% oversampled wavenumber, %/
/* ALLOCATED: makesample, makesamplel */
/* FILLED OUT: makewnsample %/
/* FREED: freemem_samp */
wavs, /% wavelength, */
/% ALLOCATED: makesample, makesamplel */
/% FILLED OUT: FINDME */
/* FREED: freemem_samp */
wns, /* wavenumber, %/
/* ALLOCATED: makesample, makesamplel */
/% FILLED OUT: makewnsample */
/* FREED: freemem_samp */
temps; /* temperature */
/* ALLOCATED: makesample, makesamplel %/
/* FILLED OUT: maketempsample */
/* FREED: freemem_samp */
prop_atm atm; /% Sampled atmospheric data */

Transit

_Bool opabreak;

int ndivs,

/%
/%

Break after opacity calculation

Number of exact divisors of the oversampling factor

*xodivs; /% Exact divisors of the oversampling factor
/* ALLOCATED: makewnsample
/* FILLED OUT: makewnsample
/% FREED: FINDME: not freed?

int voigtfine;
float timesalpha;

double p0®, r0;
double gsurf;

/%

/%
/%

Number of fine—bins of the Voigt function

Broadening profile width in number of Doppler or

Lorentz half width

Pressure and radius reference level

Surface gravity

int ann; /% Number of angles
double *angles; /% Array of incident angles for eclipse geometry
/% ALLOCATED: acceptgenhints
/% FILLED OUT: acceptgenhints
/% FREED: FINDME
int nqmol; /% Number of species scale factors
double *qgscale; /% Species scale factors
/% ALLOCATED: acceptgenhints
/% FILLED OUT: acceptgenhints
/% FREED: FINDME
int *kqmol; /% Species with scale factors
/* ALLOCATED: acceptgenhints
/% FILLED OUT: acceptgenhints
/* FREED: FINDME

int taulevel;
int modlevel;

long f£f1;
long interpflag;
long pi;

ray_solution *sol;
PREC_RES =*outpret;

/#* ALLOCATED:
/% FILLED OUT:

/%
/%

/%
/%
/%

/%
/%

Tau integration level of precision

Modulation integration level of precision

flags
Interpolation flag

progress indicator

Transit solution type

Output dependent on wavelength only as it travels

to Earth before telescope

FINDME
FINDME

*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/

*/

18

/* FREED: freemem_transit
struct saves save; /% Saves indicator of program stats
struct { /% Data structures pointers, this is data that is not
required for the final computation
struct transithint *xth;
struct lineinfo *11;
struct atm_data *at;
struct extinction *ex;

Transit

struct
struct
struct
struct
struct
#if ©
struct
#endif
struct
struct
struct
struct
struct
struct
struct
}ds;

b

opacity
grid
optdepth
idxref

geometry

savefiles

isotopes
molecules
outputray
extcloud
extscat
detailout

Ccross

*op;
kintens;
*tau;
*ir;

*sg;

*sf;

*iso;
*mol ;
*kout;
kcl;
*sc;
*kdet;

*Cross;

19

Transit 20

main transit_init
\\ do_transit
free_t —- freemem_transit
get_no_samples

Figure 2: Function structure of transit.c. The boxes contain function names, and arrows point from
a function to the function it calls. Functions are called from left to right, then top to bottom. Boxes
are color-coded as follows: purple functions are used for eclipse geometry, blue functions are used
for transit geometry, green functions are used in both, and red functions are unused at this time.

6 List of Functions in the transit Files

In this section we list all functions, sorted by source file, give a brief description of what they do,
list all variables that they alter, and provide a walkthrough for each. A modified variable is written
in red, a function is written in blue, and an unmodified variable is written in typewriter.
Unless impractical, each subsection has a diagram which indicates the function structure of that
source file.

6.1 transit.c

This file contains the main t ransit driver functions. The main function calls transit_init
and do_transit, the driver functions which do the initialization and calculation. Then main
calls free memory which frees the remaining memory. This structure is shown in Figure 2.

6.1.1 List of Functions Defined in transit.c

void transit_init (int argc, char xxargv)
This function initializes the structures used in transit.

int get_no_samples (void)
Returns the size of the wavenumber sampling array.

void get_waveno_arr (double xwaveno_arr, int waveno)
Fills the given array with the wavenumber sampling values.

vold set_radius (double refradius)
Set the reference radius in the transit structure.

void run_transit (double xre_input, int transitint, double xtransit_out,
int transit_out_size)
Driver function that loads the atmospheric file and runs transit.

Transit 21

void do_transit (double *transit_out)

void free_memory (void)

int main(int argc, char *xargv)

void freemem_transit (struct transit =*tr)

6.1.2 transit_init

6.1.2.1 Walkthrough

Initialize the transit structure to O.

Call processparameters from argum.c to process the command line arguments and store
them in the hint structure.

Call acceptgenhints from argum.c to accept general hints from the hint structure.
Call printintro from argum.c to print the introductory message.

Call makewnsample from makesample.c to create the wavenumber sampling.

Call getatm from readatm.c to read the atmospheric file.

Call readlineinfo from readlineinfo.c to read the TLI file.

Call makeradsample from makesample.c to create the radius sampling.

Call opacity from opacity.c to calculate the opacity grid.

Call readcs from crosssec.c to read CS file(s).

Set boolean to indicate that t ransit has been initiated.

6.1.3 get no_samples

6.1.3.1 Walkthough

Return the size of the wavenumber array

6.1.4 get_waveno_arr

6.1.4.1 Walkthrough

If transit_init has been run, fill out the given array with the wavenumber sampling values.
Otherwise, indicate that t ransit_init has not been run and fill the given array with -1.

6.1.5 set_radius

6.1.5.1 Variables Modified

Set tr. r0 to the reference radius.

Transit 22

6.1.5.2 Walkthrough

- Set the reference radius in the transit structure.

6.1.6 run_transit
6.1.6.1 Walkthrough

- Call realoadatm from readatm.c to reload the atmospheric data.
- Call do_transit to run calculations.

6.1.7 do_transit
6.1.7.1 Variables Modified

- Fillin tr.angleIndex.
- Free tr.save.ext.

6.1.7.2 Walkthrough

- If transit_init has been run:

- Call makeipsample from makesample.c to create the impact parameter sampling.

- Call interpcs from crosssec.c to interpolate the cross-section grid.

- Call idxrefrac from idxrefraction.c to compute the index of refraction.

- Call extwn from extinction.c to calculate the extinction coefficient.

- Call init _optdepth to initialize optical depth structures.

- If using eclipse geometry:

- Call tau from tau.c to calculate optical depth as a function of radius.
- Loop over each angle.
- Fill in angle indices.
- Call to emergent_intens from eclipse.c to calculate emergent intensity over the entire
wavenumber range.
- Call to £1ux from eclipse.c to calculate the flux spectrum.
- Call to freemem_intensityGrid to free the intensity grid.
- If using transit geometry:
- Call to tau to calculate optical depth as a fnction of radius.
- Call to modulation to calculate transit modulation at each wavenumber.

- Free the saved extinction grid.

- Callto freemem_samp, freemem_idexrefrac, freemem extinction, freemem_tau,
freemem_outputray to free the impact parameter sampling, index of refraction, extinc-
tion, optical depth, and output.

- Increment the number of iterations.

- Otherwise warn that t ransit_init has not been run.

6.1.8 free_memory
6.1.8.1 Walkthrough

- Callto freemem_molecules to free molecular information.
- Call to freemem_atmosphere to free atmospheric data.

Transit 23

If no opacity file was given (it was created), then call to freemem_linetransition to free
the line transition data.

Call to freemem_lineinfo to free line transition information.

Call to freemem_cs to free cross-section data.

Call to freemem_transit to free the transit structure.

Reset transit initiation boolean to 0.

6.1.9 main

6.1.9.1 Walkthrough

Callto transit_init from transit.c to initialize the transit structures.

Call to get _no_samples from transit.c to get the number of wavenumber samples.
Call to do_transit from transit.c to run the main calculations.

Call to free memory to free all remaining allocated memory.

Return success.

6.2 transitstd.c:

This file contains a number of standard functions. As they are largely unrelated, and called when
necessary throughout the code, there is no relative structure to the functions in this file. Figure 3
shows the function structure of transitstd.c.

6.2.1 List of Functions Defined in transitstd.c

inline void transitdot (int thislevel, int verblevel, ...)

int tr_output_fcn(int flags, const char *xfile, const long line, const char =

int tr_output_vfcn(int flags, const char xfile, const long line, const char
va_list format)

int fileexistopen(char xin, FILE xxfp)

FILE verbfileopen (char xin, char =desc)
fileexistopen

void transitcheckcalled(const long pi, const char xfcn, const int n, ...)

void error (int exitstatus, int something, const char *fmt, ...)

Transit 24

Figure 3: Function structure of transitstd.c. The boxes contain function names, and arrows point
from a function to the function it calls. Functions are called from left to right, then top to bottom.
Boxes are color-coded as follows: purple functions are used for eclipse geometry, blue functions
are used for transit geometry, green functions are used in both, and red functions are unused at this
time.

Transit 25

voilid freememmolecules) (struct molecules *mol, long =*pi)
Free molecular information.

void free_isov (prop-isov *xisov)
Free the partition function array in the variable isotope data structure.

void free_isof (prop_.isof xisof)
Free the array (isotope name) in the fixed isotope information structure.

void freemol (prop.mol *molec)
Free molecular data (density and abuncance arrays).

void free_db (prop-db =xdb)
Free the array (database name) in a database properties structure.

void free_dbnoext (prop_dbnoext =dv)
Free the temperatures array in a database properties structure.

void free_samp (prop_samp *samp)
Free the sampling values array in a sampling properties structure.

void free_ atm(prop.atm xatm)
Free the pressure, temperature, and molecular mass arrays in the atmospheric properties structure.

volid savestr (FILE *out, char #*str)
Saves a string in binary to file.

int reststr(FILE *in, char =x=*str)
Restores a string from a binary file.

void linetoolong(int max, char xfile, int line)
Raise an error indicating that a line is too long.

double timecheck (int verblevel, long iter, long index, char =str,
struct timeval tv, double t0)
Print to screen the time since given time (t0).

6.2.2 tr_output fcn:
6.2.2.1 Walkthrough

- Initialize variable arguments list.
- Call to tr output _fcn from transitstd.c to print the message with any decoration necessary.
- End using the variable arguments list.

Transit 26

6.2.3 tr_output_vfcn:
6.2.3.1 Walkthrough

Decide the output stream to use: errors go to stderr, and all other messages go to stdout.

If a banner was requested by the caller to make the message stand out, print the header line.
Errors, warnings, and other messages with the TOUT_LOCATE flag have the file and line number
printed.

Print the given message.

If a banner was requested, print the footer line.

6.2.4 fileexistopen:
6.2.4.1 Walkthrough

- If a file was requested:
Check the status of the file. If an error occurs:
- If it does not exist, return -1.
- If a different error occurs, return -4.
If the file is not of a valid type (directory, device), return -2.
If the file is, for some other reason, unopenable, return -3.
- If the file is successfully opened, return 1.
- If no file was requested, return 0.

6.2.5 verbfileopen:
6.2.5.1 Walkthrough

- Call to fileexistopen from transitstd.c to check if given file exists and open it if it does.

- If fileexistopen returns 1, return the file pointer.

- If fileexistopen returns 0, raise an error (no file given) and return NULL.

- If fileexistopen returns -1, raise an error (file does not exist) and return NULL.

- If fileexistopen returns -2, raise an error (file is invalid type) and return NULL.

- If fileexistopen returns -3, raise an error (file is unopenable, likely due to permissions) and
return NULL.

- If fileexistopen returns -4, raise an error (file exists, but something else wrong) and return
NULL.

- Otherwise, raise an error.

- Return NULL.

6.2.6 transitcheckcalled:
6.2.6.1 Walkthrough

Check each given function against the progress indicator.

If one of the functions has not been called, append the error message.
Append the names of the functions not called.

Call t r_output to print the error.

Transit

6.2.7 error:
6.2.7.1 Walkthrough

- Create output string.
- Call vtransiterror_fcn from transitstd.c to print the error.

- Exit the program.

27

Transit 28

printintro

freemem_hints
freemem_cloud

freemem_detailout — freemem_detailfid

Figure 4: Function structure of argum.c. The boxes contain function names, and arrows point from
a function to the function it calls. Functions are called from left to right, then top to bottom. Boxes
are color-coded as follows: purple functions are used for eclipse geometry, blue functions are used
for transit geometry, green functions are used in both, and red functions are unused at this time.

6.3 argum.c:

Functions in this file handle the creation and filling-out of the hint structure. The hinted values are
taken from command-line arguments and/or a configuration file, and then the general hinted values
are placed into the main transit structure. savehint, resthint are unused. Figure 4 shows
the function structure.

6.3.1 List of Functions Defined in argum.c:

int processparameters (int argc, char x*argv, struct transit =tr)
Generate the command-line option parser. Initialize transithint and populate it’s variables based on
the command-line arguments.

int acceptsoltype(transit_ray_solution x*sol, char xhname)
Initialize transit ray solution sol. and determine if any of sol-;name matches hname.

int acceptgenhints (struct transit =tr)
Set output file names in transit (out, toomuch, and sample). Initialize transit.sol. Set geometry and
detailed output variables in transit.

void savehint (FILE #*out, struct transithint =<hints)
Saves hints structure.

int resthint (FILE *xin, struct transithint xhint)
Restore hints structure. The structure needs to have been allocated before.

void printintro()
Print the introductory message.

void freemem_hints (struct transithint =+h)
Frees hints structure.

Transit 29

void freemem_cloud(struct extcloud =*c)

void freemem_detailout (struct detailout =d)

void freemem_detailfld(struct detailfld xf)

6.3.2 processparameters:
6.3.2.1 Variables Modified:

- Settr.ds.th.verbnoise, tr.ds.th.mass, tr.ds.th.savefiles (verbosity, abun-
cance type, and file saving boolean) to defaults.

- Set tr.ds.th.ncross, tr.ds.th.csfile (number of CS files, CS filenames) from
command line arguments/config file.

- Settr.ds.th.save.ext (saved extinction grid) from command line arguments/config file.

- Settr.ds.th.f opa (opacity filename) from command line arguments/config file.

- Initializetr.ds.th.det.cia, tr.ds.th.det.tau, tr.ds.th.det.ext (detailed
field structures for CIA, optical depth, and/or extinction) if specifed by command line argu-
ments/config file.

- Fill in the tr.ds.th.det structure values.

- Set tr.ds.th.ethresh (factor threshold for line profile calculation) from command line
arguments/config file.

- Allocate and set t r . ds . th. solname (ray solution type) from command line arguments/con-
fig file.

- Allocate and set tr.ds.th.f_atm, tr.ds.th.f_line, tr.ds.th.fmolfile,
tr.ds.th.f outmod, tr.ds.th.f outsample, tr.ds.th.f toomuch,
tr.ds.th.f outflux, tr.ds.th.f outintens (inputand outputfilenames)fromcom-
mand line arguments/config file.

- Settr.ds.th.savefiles (boolean to save files or not) from command line arguments/con-
fig file.

- Set tr.ds.th.p0, tr.ds.th.r0, tr.ds.th.gsurf (surface pressure, radius, and
gravity) from command line arguments/config file.

- Set tr.ds.th.allowrqg (variance from unity allowed in total abundance) from command
line arguments/config file.

- Settr.ds.th.gmol, tr.ds.th.gscale (species with scale factors, scale factors) from
command line arguments/config file.

- Settr.ds.th.opabreak (boolean to indicate to the program to break after opacity calcula-
tion) from command line arguments/config file.

- Settr.ds.th.rads.i, tr.ds.th.rads.f, tr.ds.th.rads.d, tr.ds.th.rads.

(radius sampling initial value, final value, spacing, and units conversion factor) from command
line arguments/config file.
- Settr.ds.th.wavs.i, tr.ds.th.wavs.f, tr.ds.th.wavs.d, tr.ds.th.wavs

fct

.fct

Transit 30

(wavelength sampling initial value, final value, spacing, and units conversion factor) from com-
mand line arguments/config file.

- Settr.ds.th.wns.i, tr.ds.th.wns.f, tr.ds.th.wns.d, tr.ds.th.wns.fct,
tr.ds.th.wns.o (wavenumber sampling initial value, final value, spacing, units conversion
factor, and oversampling factor) from command line arguments/config file. Initialize t r . ds . th.wns.
(number of samples) to 0 and t r.ds.wns . v (sampling values) to NULL.

- Settr.ds.th.temp.i, tr.ds.th.temp.f, tr.ds.th.temp.d (temperature sam-
pling initial value, final value, and spacing) from command line arguments/config file.

- Settr.ds.th.timesalpha (number of half-widths in a Voigt profile) from command line
arguments/config file.

- Settr.ds.th.nDop, tr.ds.th.nLor (numberof Doppler and Lorentz broadening width
samples) from command line arguments/config file.

- Settr.ds.th.dmin, tr.ds.th.dmax, tr.ds.th.lmin, tr.ds.th.lmax (broad-
ening width sample boundaries) from command line arguments/config file.

- Set verbosity to 0 if the ’q” command-line argument is given.

- Set verbosity to specified value if the 'v’ command-line argument is given.

- Settr.ds.th.sg.starrad (star radius) from command line arguments/config file.

- Settr.ds.th.sg.smaxis, tr.ds.th.sg.time, tr.ds.th.sg.incl,
tr.ds.th.sg.ecc, tr.ds.th.sg.lnode, tr.ds.th.sg.aper (semimajor axis,
phase from eclipse, inclination, eccentricity, longitude of ascending node, argument of pericen-
ter) from command line arguments/config file.

- Settr.ds.th.sg.smaxisfct, tr.ds.th.sg.timefct, tr.ds.th.sg.inclfct,
tr.ds.th.sg.eccfct, tr,.ds.th.sg.lnodefct, tr.ds.th.sg.aperfct (unit
conversion factors for above orbital parameters) from command line arguments/config file.

- Settr.ds.th.sg.transpplanet (boolean to set maximum optical depth to toomuch) to
True if specified in commmand-line arguments/config file.

- Set tr.ds.th.toomuch (maximum optical depth to make calculations, above which it is
assumed no light transmits) from command line arguments/config file.

- Settr.ds.th.taulevel (optical depth integration level) from command line arguments/-
config file.

- Settr.ds.th.modlevel (modulation integration level) from command line arguments/con-
fig file.

- Settr.ds.th.cl.cloudext, tr.ds.th.cl.cloudtop, tr.ds.th.cl.cloudbot
(maximum cloud extinction, initial cloud radius, and final cloud radius) from command line ar-
guments/config file.

- Settr.ds.th.angles (intensity angles) from command line arguments/config file.

6.3.2.2 Walkthrough:

- Set up an enumerated list of all command line arguments, creating a key.
- Build a structure to identify all command line arguments.
- Build a configuration paramters structure.
- Initialize the hint structure, and set all memory to zero.
- Set up flags, verbosity, abundance units, and whether or not to save files.
- Set up the detailed output field structures for optical depth, extinction, and CIA.
- Begin infinite loop:
- Call to procopt from procopt.c to process the command line options. If the option supplies
a configuration file, procopt will parse the file.

Transit 31

- If procopt returns -1 (indicating no more command line arguments to process), exit the loop.
- Handle the returns of procopt on a case-by-case basis (a case for each command line ar-
gument), filling in the hint structure with the specified values. There are too many options
to practically list here. makes the command-line-argument parser, resets the transithint struct,
and fill in its variables with default values and command line arguments.
- Call procopt_free from procopt.c to free the memory used by procopt.
- Return 0 on success.

6.3.3 acceptsoltype:
6.3.3.1 Walkthrough

- Loop over each element in the ray solutions array.
- Compare each solution with the given string.
- If they match, set the solution and return 0.

- Return -1.

6.3.4 acceptgenhints:
6.3.4.1 Variables Modified

- Copy tr.f outmod from th. f_outmod or default (modulation output filename).

- Copy tr.f outflux from th_outflux ordefault (flux output filename).

- Copy tr.f toomuch, tr.f outsample, tr.outintens fromth.f toomuch,
th.f outsample, th.f_outintens (maximum optical depth, sampling output, and in-
tensity output filenames).

- Copy tr.ds.det from th.det (detailed output structure).

- Copy tr.timesalpha from th.timesalpha (Voigt profile width).

- Copy tr.opabreak from th.opabreak.

- Settr.interpflagto SAMP_LINEAR or SAMP_SPLINE depending on tr. £1 (flag).

- Copy tr.r0 from th. r0 (reference radius).

- Copy tr.p0 from th.pO (reference radius).

- Copy tr.gsurf from th.gsurf (surface gravity).

- Call parseArray from iomisc.c tocopy t r.gscale fromth.gscale and set tr.ngmol
to the size of th.gscale. If th.gscale was not given, set t r . ngmol to 0.

6.3.4.2 Walkthrough:

- Set output filenames for modulation, flux, radius where maximum tau was reached, sampling,
and intensity from hint structure.

- Set molecular filename from hint structure.

- Call to acceptsoltype from argum.c to get the solution type. Raise an error if an invalid
type was provided, and exit program.

- Call to setgeomhint from geometry.c to set hinted geometry information.

- Copy the hinted detailed output structure.

- Check that the given number of alpha units in Voigt profile width is more than 1. If not, raise an
error and return -1.

- Set the number of alpha units in Voigt profile width.

- Check that the transition line strength threshold is positive. If not, raise an error and return -1.

Transit 32

- Call transitacceptflag (defined in transit.h) to pass atmospheric flags into the transit
structure.
- Set the flag to break t ransit after the opacity grid has been calculated from the hint structure.
- Set the interpolation function flag. Raise an error if invalid function specified.
- Raise an error and return -1 if the specified reference radius is negative.
- Set the reference radius from the hint structure.
- Raise an error and return -1 if the specified reference pressure is negative.
- Set the reference pressure from the hint structure.
- Raise an error and return -1 if the specified surface gravity is negative.
- Set the surface gravity from the hint structure.
- If abundance scale factors were specified:
- Call parseArray from iomisc.c to set the abundance scale factors from the hint structure
and set the number of scale factors.
- If the number of molecules with scale factors does not match the size of the scale factors array,
raise an error.
- Otherwise, set the number of scale factors to 0.
- Return 0 on success.

6.3.5 savehint:
6.3.5.1 Walkthrough

- Write the hint structure to file.

- Call to savestr from transitstd.c to write input and output filenames, in binary, to file (at-
mosphere, TLI, CS, modulation, flux, intensity, radius where maximum tau was reached, and
sampling files). Write the solution name to file.

- Call to savesample_arr from makesample.c to save the radius, wavelength, wavenumber,
and impact parameter sampling to file.

6.3.6 resthint:
6.3.6.1 Variables Modified

- Restoretr.ds.th.f_atm, tr.ds.th.f_line, tr.ds.th.f_outmod,
tr.ds.th.f outflux, tr.ds.th.f_outintens, tr.ds.th.f_toomuch,
tr.ds.th.f_outsample, tr.ds.th.solname, tr.ds.th.csfile from file.

- Restoretr.ds.th.rads, tr.ds.th.wavs, tr.ds.th.wns, tr.ds.th.ipsfrom
file.

6.3.6.2 Walkthrough

Restore the main hint structure from file.

If reading the file returns an error, return the error. Otherwise, increment the function result by
the number of elements read from file.

Call reststr from transitstd.c to restore the strings in the hint structure.

Call restsample_arr from makesample.c to restore the arrays in the hint structure.

Return the number of elements read from the file.

Transit 33

6.3.7 freemem_hints:

6.3.7.1 Variables Modified

- Freetr.ds.th.f_atm, tr.ds.th.f_line, tr.ds.th.f_outmod, tr.ds.th.f outflux,
tr.ds.th.f outintens, tr.ds.th.f toomuch, tr.ds.th.f outsample,
tr.ds.th.fmolfile, tr.ds.th.solname, tr.ds.th.csfile.

6.3.7.2 Walkthrough

Free all filenames in the hint structure.

Free the solution name.

Call to freemem_samp from makesample.c to free the hinted sampling for radius, wavelength,
wavenumber, and impact parameter.

Call to freemem_cloud from argum.c to free hinted cloud info.

Callto freemem detailout from argum.c to free hinted detailed output structure.

Transit 34

6.4 geometry.c:

This file contains routines which handle the hinted geometry parameters and make calculations
regarding the geometry of the transit or eclipse.

6.4.1 List of Functions Defined in geometry.c:

int setgeomhint (struct transit =xtr)

int setgeom(struct geometry *sg, double time, long xflags)

inline PREC_RES starvariation (double x, double y, double radius)

6.4.2 setgeomhint
6.4.2.1 Modified

- Copy th.sg.transpplanetintotr.ds.sg.transpplanet.

- Setall tr.ds.sqg variables excepttr.ds.sg.xand tr.ds.sg.y from th. sg. If a hinted
value is not given, set them to default values.

- Update t r.p1i to account for TRPT_GEOMETRYHINT.

6.4.2.2 Walkthrough

Copy hinted transpplanet into the transit structure. This is a boolean which, if true, sets the
maximum optical depth to toomuch.

Set all variables in the geometry structure from the hinted structure (tr.ds.th.sg) except
X and Y values (coordinates of planet relative to the star). If no hinted variable is given, the
variables are set to a default value.

Update the progress indicator to account for TRPI_GEOMETRYHINT.

Return 0 on success.

6.4.3 setgeom
6.4.3.1 Modified

- Calculate sg.x, sg.y by solving the Kepler equation.
- Update t r . pi to account for TRPI_GEOMETRY.

6.4.3.2 Walkthrough

Calculate semi-major axis, eccentricity, inclination, observation time, and stellar mass in cgs
units.

Set the precision limit for the square of the eccentric anomaly.

Calculate mean motion (orbital angular frequency).

Set the approximate eccentric anomaly and calculate the eccentric anomaly

Transit 35

- While the square of the difference between the eccentric anomaly approximation and the ec-
centric anomaly is greater than the precision limit, set the approximation equal to the eccentric
anomaly and recalculate the eccentric anomaly at time t. When the loops exits, the eccentric
anomaly at time t will have been calculated.

- Calculate orbital parameters.

- Calculate the position of the planet relative to the center of the star (sg.x, sg.y).

- Update the progress indicator to account for TRPI_GEOMETRY.

- Return 0 on success.

6.4.4 starvariation
6.44.1 Walkthrough

- Return 0 if position (X, y) is not within a circle of given radius.
- Return 1 otherwise.

Transit 36

Figure 5: Function structure of readlineinfo.c. The boxes contain function names, and arrows point
from a function to the function it calls. Functions are called from left to right, then top to bottom.
Boxes are color-coded as follows: purple functions are used for eclipse geometry, blue functions
are used for transit geometry, green functions are used in both, and red functions are unused at this
time.

6.5 readlineinfo.c:

This file is concerned with reading TLI files produced by the py1lineread program. Only binary
TLI files are accepted. Functions saveline, main are notcurrently used in transit. Figure
5 shows this function structure.

6.5.1 List of Functions Defined in readlineinfo.c:

static inline void datafileBS(FILE *fp, PRECNREC offs, PREC_LNDATA target,
PREC_NREC xresultp, int reclength, int up)

Do a binary search in file pointed by *fp’ between "off” and ’off+nfields’ looking for "target’ as the

first item of a record of length ’reclength’, result index (with respect to offs) is stored in ’resultp’.

int readlineinfo(struct transit =xtr)
Driver function to read TLI: read isotopes info, check margin and ranges, and read line transition
information.

int readinfo_tli(struct transit *tr, struct lineinfo =11i)
Check if a TLI file exists. Check that machine formating is compatible with lineread. Determine
if TLI is ASCII or binary. Read either ASCII or binary TLI file. Declare line_transition.

int readtli bin(FILE *fp, struct transit *tr, struct lineinfo =%1i)
Read initial and final wavelength limits and number of databases. Allocate pointers to database,
and isotope arrays. Get databases info: names, number of temperatures, temperatures, number of

Transit 37

int setimol (struct transit =xtr)

int checkrange (struct transit *tr, struct lineinfo *11i)

int readdatarng(struct transit xtr, struct lineinfo =x11i)

int freemem_isotopes (struct isotopes =xiso, long *pi)

int freemem_ linetransition(struct line_transition =x1lt, long *pi)

int freemem_lineinfo(struct lineinfo x1i, long *pi)

void saveline (FILE *fp, struct lineinfo =x11i)

int main (int argc, char *xxargv)

6.5.2 readlineinfo:

6.5.2.1 Variables Modified

Reset tr.ds.1i, tr.ds.iso (lineinfo and isotopes structures).
Settr.ds.li.tmin, tr.ds.li.tmax (minand max temperatures in TLI files).
If an opacity file exists, update t r . pi to account for TRPI_ READINFO and TRPI_ READDATA.

6.5.2.2 Walkthrough

Reset line information and isotopes structures.

Set min and max allowed temperatures in TLI files.

Call readinfo_t11i to check if TLI file exists, open it, and get header information (all info
exept line transitions).

If readinfo_t1i was successful, call checkrange to check the range of the hinted values
against the range of wavelengths in the TLI file.

Call setimol to set the molecular index of each isotope.

Check if an opacity file exists. If not, and checkrange was successful, call readdatarng

Transit 38

to read the TLI file data. Otherwise, skip reading the TLI file and update the progress indicator
to allow the program to continue.
- Return 0 on success.

6.5.3 readinfo_tli:
6.5.3.1 Variables Modified

Settr.f line from th.f_1ine if file exists and could be opened (TLI filename).

Set tr. fp_1ine (pointer to TLI file).

Declare tr.ds.1i.1t.

Settr.ds.li.lt.wfct, tr.ds.li.lt.efct fromdefaultvalues (line-transition wave-
length and lowE units factor).

Update tr.pi to include TRPI_READINFO.

6.5.3.2 Walkthrough

- Declare a union variable which is used to determine endianness compatibility.

- Check that a TLI file name was given. If not, raise an error and return -2.

- Check if TLI file exists. If not, raise an error and return -1.

- Set the TLI file name and file pointer from hint structure.

- Read the first four bytes of the TLI file into the union variable.

- Callto readt1li bin toread the binary TLI file. Raise an error and return -6 if readt 11 bin
returns an error.

- Set the wavelength and lowE units conversion factor for line transitions.

- Update the progress indicator.

- Return -1 on success.

6.5.4 readtli_bin:
6.5.4.1 Variables Modified

-Settr.ds.li.tli ver, tr.ds.li.lrver, tr.ds.li.lr_revfromTLIfile (line-
info TLI version, lineinfo version and revision).

- Allocate t r.ds . iso.db (database structures for each isotope).

- Allocate t r.ds. 11 .db (database structures for temperature information).

- Allocate tr.ds.1iso.isof (structure for fixed isotope information).

- Allocate t r.ds. 11 .1isov (structure for variable isotope information).

- Allocate tr.ds.iso.isoratio (isotope abundance ratio).

- Allocatetr.ds.iso.db.n, tr.ds.iso.db.molname (database name and molecule name)
for each database.

- Set tr.ds.li.db.t, tr.ds.iso.db.i (number of temperatures and number of iso-
topes) for each database.

- Allocate tr.ds.11i.db.T (temperature points in TLI file) for each database and set from the
TLI file.

- Reallocatetr.ds.li.isov, tr.ds.iso.isof, tr.ds.iso.isoration toaccount
for new isotopes.

- Allocate tr.ds.11.1isov.z (partition function).

- Settr.ds.iso.isof.d (database index of the isotope) for each isotope.

Transit 39

- Allocate and set t r . ds . iso.isof .n (isotope name) for each isotope.

- Settr.ds.iso.isof.m (mass) for each isotope.

- Settr.ds.iso.isoratio (isotopic ratio) for each isotope.

- Settr.ds.li.isov.z (partition function) for each isotope.

- Settr.ds.1li.isov.n (partition function array length) for each isotope.
- Settr.ds.iso.db.s (index of the first isotope) for each database (species).
-Settr.ds.li.ni, tr.ds.iso.n_i (number of isotopes).

- Settr.ds.li.ndb, tr.ds.iso.n_db (number of databases).
-Settr.ds.li.iniw, tr.ds.li.finw (initial and final wavelength).
- Settr.ds.1li.endinfo (position of beginning of transition data).

- Allocate t r.ds.iso.isov (structures for isotopes’ variable data).

6.5.4.2 Walkthrough

- Read the TLI version, lineread version, and lineread revision number from the TLI file.

- Check that the TLI version is compatible with the transit version. If not, raise an error.

- Read the initial wavelength, final wavelength, and number of databases from the TLI file.

- Allocate structures for databases for each isotope.

- Allocate structures for fixed and variable isotope data.

- Allocate isotopic abundance ratios.

- Set max and min allowed temperatures.

- Loop over each database (each species):

- Read database name length, allocate space for the name, and read the name from the TLI file.
- Read molecule name length, allocate space for the name, and read the name from the TLI file.
- Read and set the number of temperatures and number of isotopes.
- Allocate array for the temperatures and read from the file.
- Reallocate variable isotope data structures, fixed isotope data structures, and isotopic abun-
dance ratio to account for new isotopes.
- Allocate array for partition function data.
- Loop over each isotope:
- Set isotope’s database index number.
- Read isotope name length, allocate space for the name, and read the name from the TLI file.
- Read isotope mass and isotopic ratio from the TLI file.
- Set the index of the first isotope in this isotope.
- Increment the number of isotopes by the number of isotopes in this database.

- Set the number of total isotopes, number of databases, position of the first transition in the TLI
file, initial wavelength, final wavelength, and number of databases (in both the line transition and
isotopes structures).

- Allocate structures for isotopes’ variables data.

- Return 0 on success.

6.5.5 checkrange:
6.5.5.1 Walkthrough

- Calculate wavelength limits in cgs units.
- If the final wavelength given is less than the minimum wavelength in the database, return -3.
- If the final wavelength given is greater than the maximum wavelength in the database, raise a

Transit 40

warning.

- If the initial wavelength given is greater than the maximum wavelength in the database, return
-2.

- If the initial wavelength given is less than the minimumn wavelength in the database, raise a
warning.

- Return the result (O on success).

6.5.6 readdatarng:
6.5.6.1 Variables Modified

Allocatetr.ds.li.lt.wl, tr.ds.li.lt.isoid, tr.ds.li.lt.gf, tr.ds.li.lt.elow
(line-transition’s wavelength, isotope ID, gf, and lower state energy).

Settr.ds.li.lt.wl, tr.ds.li.lt.isoid, tr.ds.li.lt.gf, tr.ds.li.lt.elow
from read TLI values.

Settr.ds.1i.n_1 (Number of lines read from TLI).

Update t r.pi toinclude TRPI_READDATA.

6.5.6.2 Walkthrough

- Call to fileexistopen from iomisc.c to open the TLI file. Return O if no file was given. If
the file exists but cannot be opened, return -1.

- Check if the file is ’seekable’. If not, raise an error and return -2.

- Move the file pointer to the beginning of the transition data.

- Read the number of transitions from the TLI file.

- Read the number of isotopes from the TLI file.

- Read the number of transitions per isotope from the TLI file.

- Loop over subsequent wavelength entries to check that they are greater than the final wavelength.
If not, increment the index of the final wavelength until the condition is true.

- Store the number of lines.

- Allocate arrays for line transition’s oscillator strength, central wavelength, isotope ID, and lower-
state energy.

- Check for allocation errors. Raise an error if any of the allocations failed.

- Set the starting location for wavlengths, isotope IDs, lower-state energy, and oscillator strength.

- Loop over each isotope:
- Call to datafileBS to find the index of the first transition to be read.

Call to datafileBS to find the index of the last transition to be read.

Move file pointer to the beginning of the wavelength info and read into the allocated array. Do

the same for isotope IDs, lower-state energy, and oscillator strength (gf).

Increment the number of lines read.

Move the wavelength offset to the next isotope.

- Reallocate the central wavelength, isotope ID, lower-state energy, and osciallator strength arrays
to the correct size.

- Close the file.

- Update progress indicator.

- Return the number of lines read.

Transit 41

6.5.7 datafileBS:

6.5.7.1 Walkthrough

Set the index of the end of the search range to one less than the number of fields to search. Set

the index of the beginning of the range to 0.

Perform binary search. While the difference between the beginning and end indices is greater

than 1:

- Set the result index to the middle of the search range.

- Move the file pointer to the result index.

- Read the value at that point.

- If the target value is greater than the read value, move the beginning of the search range up to
the result index. Otherwise, move then end of the search range to the result index.

Perform a linear search through entries above or below that found by the binary search depending

on the flag passed.

Set the result index to the beginning index of the search range.

Move the file pointer to this point.

Read the value at that point in the file.

6.5.8 setimol:

6.5.8.1 Variables Modified

Allocate and fill t r . ds . iso.imol (molecular indices array).

6.5.8.2 Walkthrough

Return O if there are no isotopes.

Allocate molecular indices array.

Loop over isotopes:

- Call to findstring from iomisc.c to find the index of the molecule name in the list of
isotope database molecule names.

- If the found molecule is not already in the molecular indices array, increment the total number
of molecules.

Return O on success.

Transit 42

getatm ‘T\-" getmnfromfile —f- storename
n% o
A readatmfile ?\.' checkposvalue
‘ checkaddmm
telldefaults
freemem_atmaosphere
atmem
reloadatm —-- checkaddmm
R

Figure 6: Function structure of readatm.c. The boxes contain function names, and arrows point
from a function to the function it calls. Functions are called from left to right, then top to bottom.
Boxes are color-coded as follows: purple functions are used for eclipse geometry, blue functions
are used for transit geometry, green functions are used in both, and red functions are unused at this
time.

6.6 readatm.c:

This file contains functions which read the atmospheric file. telldefaults is currently unused.
Figure 6 shows the function structure.

6.6.1 List of Functions Defined in readatm.c:

int getatm(struct transit =*tr)

Initialize ds.at (atm_data). Set abundance mass and allowrq parameters. Check existence, open,
and set pointer to atmosphere file. Get keyword variables from atm file (list of isotopes among
others). Get temperature and isotopes abundances per radius from atm file.

double checkaddmm (double xmm, PRECNREC r, prop.isov xisov, prop.isof =*isof,
int n, _Bool mass, enum isodo #*isodo)
Compute the mean molecular mass, check that sum of abundances is no bigger than 1, and return it.

void telldefaults(struct isotopes xiso, struct atm.data =at)
Tell defaults when only one radius is being selected.

int freemem_atmosphere (struct atm.data xat, long x*pi)
Free memory from the atmosphere structure.

vold storename (struct atm.data =xat, char xline)
Store info about the atmosphere file.

Transit 43

static void atmerr (int max, char *file, int line)
Print error message when a line of the file is longer than the max characters.

static void invalidfield(char =*line, int nmb, int f1ld, char =*fldn)
Print an error message when a field with transition info is invalid.

static inline void checkposvalue (PREC_RES val, int field, long line)
Chack that a value is positive, and raise an error if it is not.

int getmnfromfile(FILE *fp, struct atm.data =*at, struct transit =*tr)
Get keyword variables from atmosphere file (mass/number abundance bool; zero-radius offset; ra-
dius, temperature, and pressure units factor; atmfile name/info; list isotopes; list of proportional-
abundance isotopes). Store molecules and proportional isotopes in atm_data struct. Determine
which linedb isotope corresponds to such atm_data isotope. Solve non-matched linedb isotope
cases. Put all non-ignore isotopes in transit.ds.iso structure.

int readatmfile (FILE =xfp, struct transit *tr, struct atm.data =at,
prop-samp =*rads, int nrad)

Read and store radius, pressure, and temperature from file. Read abundances for each (non other-
factor) isotope. Sum fractional abundances. Calculate ramaining (other-factor) abundances. Cal-
culate mean molecular mass per radius. Calculate densities per isotope at each radius.

void getmoldata (struct atm.data =xat, struct molecules *mol, char xfilename)
Read and store non-layer-dependent molecular data (mass, radius, ID) and store in mol struct.

int reloadatm(struct transit xtr, double xinput)
Reload data from array into transit’s atm structure.

int radpress (double g, double p0O, double r0, double xtemp, double *mu,
double x*pressure, double xradius, intnlayer, double rfct)

Recalculate radius array according to hydrostatic pressure, and find the radial location of the ref-
erence pressure.

6.6.2 getatm:
6.6.2.1 Variables Modified:

- Initialize tr.ds.at, tr.ds.mol (atm_data, molecules).

- Settr.ds.at.mass from th.mass (mass or number abundance bool).

- Settr.allowrqgfromth.allowrqg (minimum allowed sum of abundances).

- Set tr.fp atm from th.f atm if th.f_atm exists and can be opened (atmosphere file
pointer).

- Set t r. f _atm (atmosphere file name).

- Settr.ds.at.atm.tfct, tr.ds.at.atm.pfct from default values (temperature and
pressure unit factors).

- Allocatetr.ds.at.rads.v, tr.ds.at.atm.t, tr.ds.at.atm.p (radius, temper-
ature and pressure array).

- Allocatetr.ds.mol.nmol, tr.ds.mol.ID, tr.ds.mol.mass, tr.ds.mol.radius,

Transit 44

tr.ds.mol.molec (number of molecules, molecular IDs, molecular masses, molecular radii,
and molecular properties).

- Allocatetr.ds.at.molec, tr.ds.at.mm, tr.ds.at.molec.d, tr.ds.at.molec.q
(molecular properties substructure, mean molecular mass, molecular density, molecular abun-
dance) and set tr.ds.at .molec.n (size of radius sampling)

- Settr.ds.at.rads.i, tr.ds.at.rads.f, tr.ds.at.rads.o, tr.ds.at.rads.d
(radius sampling initial value, final value, oversampling, and spacing).

- Update tr.pi to account for TRPI_GETATM.

6.6.2.2 Walkthrough:

- Initialize atmosphere and molecular structures by setting memory to 0.

- Copy mass boolean from the transithint structure. This boolean indicates whether abundances
are in units mass or number.

- Copy abundance exactness number from transithint structure. This number determines if an error
is raised when the sum of the abundances does not equal one.

- If the atmospheric file was not specified, raise an error and return -1.

- If the atmospheric file is specified, exists, and can be opened, set the file pointer and file name.

- Allocate radius sampling values, temperature, and pressure arrays.

- Call getmnfromfile from readatm.c to get keyword variables from the atmospheric file.
Raise an error if the atmospheric file contains less than 1 line read.

- Allocate molecular structure variables (number of molecules, molecular ID, molecular masses,
molecular radii, and molecular properties substructure).

- Call getmoldata to get molecular data from the molecules file.

- Allocate molecular properties substructure of atmospheric data structure, mean molecular mass,
molecular density, and molecular density. Set number of elements.

- Call to readatmfile to read per-radius isotopic abundances, temperatures and set number a
radius layers.

- Close the file.

- Set the radius sampling initial value, final value, oversampling, and spacing.

- Update progress indicator to show getatm has been run.

- Return 0 on success.

6.6.3 checkaddmm:
6.6.3.1 Walkthrough

Raise an error if given radius layer is beyond the allocated radius layers.
Compute mean molecular mass and sum of abundances.

If the sum of abundances is more than 0.1% over unity, raise a warning.
Return the sum of the abundances.

6.6.4 getmnfromfile:
6.6.4.1 Variables Modified

- Set tr.ds.at .begline (line where radius-dependent info begins) to 0.
- Allocate and fill out t r . ds .mol . name (molecules’ names).
- Set tr.ds.at .mass according to the atmospheric file.

Transit 45

- Settr.ds.at.info according to the atmospheric file.
- Set tr.ds.at .begpos (position of the beginning of data).

6.6.5 readatmfile:
6.6.5.1 Variables Modified

- Reallocatetr.ds.rads.v, tr.ds.at.atm.t, tr.ds.at.atm.p, tr.ds.at.mm,
tr.ds.at.molec.d, tr.ds.at.molec.q (radius sampling values, temperature, pres-
sure, mean molecular mass, density, and abundance arrays) to accommodate more radius layers.

- Settr.ds.at.molec.n to the new number of radius layers.

- Fillintr.ds.rads.v, tr.ds.at.atm.p, tr.ds.at.atm.t from atmosphere file.

- Fillintr.ds.at .molec.qg from atmosphere file.

- Calculate tr.ds.at.molec.d.

6.6.5.2 Walkthrough

- Call valueinarray to find the indices of H2 and He in the molecular ID array.

- Move the stream position to the beginning of data in the atmosphere file.

- Call fgetupto_err toread past all blank lines and comments.

- Call countfields to count the number of values per line, minus the radius, pressure, and
temperature columns.

- Move the stream position back to the beginning of data in the atmosphere file.

- Begin infinite loop.

If the current radius index reaches the total number of radius layers:

- Perform a binary left shift to double the number of radius layers.

- Reallocate radius sampling values, temperature, pressure, mean molecular mass, density,
and abundance arrays according to the new number of radius layers.

- Set the number of radius elements in the molecules’ substructures to the new number of
radius layers.

- Call fgetupto_err to skip past comments and blank lines.

- Break loop when the end of the file is reached.

- Store radius values in the radius sampling values array. Call checkposvalue from rea-
datm.c to check that the stored value is positive

- If there was a problem converting the read value to a double, call invalidfield from
readatm.c to warn that an invalid value was given in the file.

- Loop over each abundance.
- Read the abundance for this particular isotope and radius into the corresponding molecular

abundance array.
- Convert abundances using the scale factor.
- Sum up abundances and metal abundances (everything but H2 and He).
- Check that the abundances are positive, and raise an error if there was a problem reading the
abundance into the array.

- Calculate H2/He ratio, Helium abundance, and diatomic Hydrogen abundance.

- Call checkaddmm from readatm.c to calculate mean molecular mass and check that the sum
of abundances is within the permitted range of one. If not, raise a warning.

- For each isotope, call stateegnford from transit.h to calculate densities using the ideal gas
law.

Transit 46

- Increment to the next radius layer.
- Reallocate the arrays down to the final size according to the number of radius layers incremented
in the infinite loop.
- Loop over the radius layers to check sorting:
- If each radius value is greater or equal to the next one, or each pressure value is less or equal
to the next one, set sorting boolean to false.
- If each radius value is less or equal to the next one, or each pressure value is greater or equal
to the next one, set reversed boolean to false.
- If the sorting and reversed booleans are both false, raise an error.
- If the reversed boolean is true, loop through the first half of the sampling arrays and call swap
from iomisc.c to swap the atmospheric layer values (reversing them to be sorted the correct way).
- Return the number of radius layers.

6.6.6 getmoldata:
6.6.6.1 Variables Modified

- Fillintr.ds.mol.radius, tr.ds.mol.ID, tr.ds.mol.mass from the molecular
information file.

6.6.6.2 Walkthrough

- Call verbfileopen from messagep.c to open the molecular info file if it exists.

- Skip past all comments and blank lines.

- Count the number of species

- Allocate arrays for molecule ID, mass, names, and radii.

- Skip past all comments and blank lines.

- Read molecular info from file by calling get name and next field from iomisc.c. Place into
the allocated arrays.

- Loop over each molecule.

- Call findstring from iomisc.c to check if the molecule’s name matches any aliases from
the file. If so, use the alias as the molecule’s name. Otherwise, use the molecule’s name from
the molecule structure.

- Call findstring from iomisc.c to find the index of the molecule. Use that index to set the
radius, molecular ID, and mass in the molecule structure.

6.6.7 reloadatm:

6.6.7.1 Variables Modified

- Settr.ds.at.rads.i, tr.ds.at.rads.f (initial and final radius sampling values) ac-
cording to the new radius array.

6.6.7.2 Walkthrough

- Update temperature array at every layer.

- Update abundance array at every layer and for every molecule.

- Call checkaddmm to recalculate mean molecular mass and check whether the sum of abun-
dances is sufficiently close to one. If not, print a warning.

Transit 47

Check that radius reference level, pressure reference level, and surface gravity were defined. If
not, raise an error.

Call radpress from readatm.c to recalculate the radius array

Set the initial radius value and final radius values according to the new radius array.

Call makeradsample to make a new radius sampling array.

6.6.8 radpress:
6.6.8.1 Variables Modified

- Recalculate tr.ds.at.rads.v.

6.6.8.2 Walkthrough

- Set the first element of the radius array to 0.

- Loop over each radius layer.
- Use cumulative trapezoidal integration to fill out the rest of the radius array using Equation 10.
- Find the indices of the layers with pressures just above and below the reference pressure.

- Raise an error if the reference pressure was not found to be between any two layers in the pressure
array and return 0.

- Log-linearly interpolate (linear in radius, logarithmic in pressure) to find the radius at the refer-
ence pressure.

- Shift the radius array to force the radius at the reference pressure equal to the reference radius.

Transit 48

A
== - =

BN - ="
=1 - ==
=N ~ ==

Figure 7: Function structure of makesample.c. The boxes contain function names, and arrows
point from a function to the function it calls. Functions are called from left to right, then top to
bottom. Boxes are color-coded as follows: purple functions are used for eclipse geometry, blue
functions are used for transit geometry, green functions are used in both, and red functions are
unused at this time.

6.7 makesample.c:

This file is concerned with producing sampling arrays for parameters including wavenumber,
radius, temperature, and impact parameter. Sampling functions for each parameter call either
makesample or makesamplel to with the proper variables to create the sampling. Func-
tions savesample, savesample_arr, restsample, restsample_arr are unused.
main is only used for debugging. Function structure is shown in Figure 7.

6.7.1 List of Functions Defined in makesample.c:

int makesamplel (prop.samp *samp, prop.samp =*ref, const long fl)
Create a sampling array. Take values from a reference sampling.

int makesample (prop_samp *samp, prop.samp xhint, prop.samp *ref, const long 1
Create a sampling array. Take values from hint or else from a reference sampling.

int makewnsample (struct transit =*tr)
Call makesample to create the wavenumber sampling using the inverse-wavelength values as ref-
erence.

int makeradsample (struct transit =xtr)
Call makesample to create the radius sampling.

int makeipsample (struct transit =*tr)
Call makesample to create the impact parameter sampling using the reversed radius limits and

Transit 49

spacing as reference (always produce an equispaced sampling).

int maketempsample (struct transit =tr)

static void printsample(FILE *out, prop.samp =*samp, char =xdesc, long fl)
Print a sampling’s information to file.

void savesample (FILE *xout, prop.samp *samp)
Save in binary the sample structure.

void savesample_arr (FILE xout, prop_samp *samp)
Saves in binary the sample structure’s arrays.

int restsample(FILE *in, prop-samp *samp)
Restore a binary sample structure.

int restsample_arr (FILE *in, prop.-samp *samp)
Restore a binary sample structure.

int outsample (struct transit =xtr)
Print the sample data to file.

void freemem_samp (prop.samp *samp)
Frees the sampling structure.

int main (int argc, char xargvl[])
De-bugging.

6.7.2 makesamplel:
6.7.2.1 Walkthrough

- Set the acceptable ratio that the final value must fall in to not be truncated.

- Get sampling units factor, initial value, and final value from the given reference sampling.

- Raise an error and return -3 if the final value is less than the initial value.

- Raise an error and return -5 if the reference sampling has no spacing.

- If the reference sampling has spacing, set the sampling spacing equal to the reference spacing.

- If the spacing is negative, switch the sign on the acceptable ratio.

- Set the number of points for the sampling.

- Ensure that the number of points is positive.

- Check that the reference sampling has a valid oversampling factor (positive). If not, raise an
error and return -6.

- Set the oversampling factor from the reference oversampling factor.

- Calculate the number of oversampled points and the spacing between oversampled points.

- Allocate and fill in sampling values.

- Check that the final sampling point coincides with the final value. If not, raise a warning.

Transit 50

Return O (res is O for all cases) on success.

6.7.3 makesample:

6.7.3.1 Walkthrough

Set the acceptable ratio that the final value must fall in to not be truncated.

Get sampling units factor from the reference sampling if the hinted sampling is unset or invalid.

Otherwise, use the hinted sampling.

Get inital and final sampling values from hinted sampling. If hinted sampling is unset or invalid,

get them from the reference sampling and update a flag to make note of this.

Raise an error and return -5 if the reference sampling has no spacing.

If the reference sampling has spacing:

- Set the sampling spacing equal to the reference spacing.

If the reference sampling does not have spacing:

- If the initial and/or final values were taken from the reference sampling rather than the hinted
sampling, raise a warning that this happened and that the initial or final values may have been
modified.

- Set the number of samples from the reference sampling.

- Set the sampling spacing to 0.

- Allocate sampling values, and copy from reference sampling values.

- If an oversampling factor was given, raise a warning that this factor will be ignored.

- Set oversampling factor to O.

- Return a flag indicating whether the reference inital and final values were used or not.

If a spacing was hinted:

- Set sampling spacing to hinted spacing.

If none of these spacing conditions are true, raise an error that the sampling inputs are invalid.

Raise an error and return -3 if the accepted inital and final sampling values create an invalid (zero

or negative) interval.

If the sampling spacing is negative, switch the sign on the acceptable ratio.

Set the number of points for the sampling.

Ensure that the number of points is positive.

If the hinted oversampling factor is not given or invalid:

- If the reference oversampling factor is not given or invalid, raise an error and return -6.

If the hinted oversampling factor is valid, set the sampling oversampling factor equal to the

hinted oversampling factor.

Calculate the number of oversampled points and the oversampled spacing.

Allocate and fill in sampling values.

Check that the final sampling point coincides with the final value. If not, raise a warning.

Return a flag indicating whether the reference initial and final values were used or not.

6.7.4 makewnsample:

6.7.4.1 Variables Modified:

Call to makesample from makesample.c to set t r . wns values.
Modify tr.pi to account for TRPI_MAKEWN.

Transit 51

6.7.4.2 Walkthrough

If the hinted inital wavenumber sampling value is positive:

- If the hinted wavenumber sampling factor is negative, raise an error.

- Set the reference initial wavenumber sampling value from the hinted initial wavenumber sam-
pling value.

Otherwise, if the hinted initial wavelength sampling value is positive:

- If the hinted wavenumber sampling factor is negative, raise an error.

- Set the reference initial wavelength sampling value from the hinted initial wavelength sampling
value.

Otherwise, if no valid inital wavenumber or wavelength were given, raise an error.

If the hinted final wavenumber sampling value is positive:

- If the hinted wavenumber sampling factor is negative, raise an error.

- Set the reference final wavenumber sampling value from the hinted final wavenumber sampling
value.

Otherwise, if the hinted final wavelength sampling value is positive:

- If the hinted wavenumber sampling factor is negative, raise an error.

- Set the reference final wavelength sampling value from the hinted final wavelength sampling
value.

Otherwise, if no valid final wavenumber or wavelength were given, raise an error.

Set reference oversampling factor from hinted oversampling factor.

Set reference unit conversion factor (1).

Set reference number of samples to 0.

Raise an error if no hinted sampling spacing is given.

Set reference sampling spacing from hinted sampling spacing.

Call makesamplel from makesample.c to make the oversampled wavenumber sampling.

Set reference oversampling factor to 1 (no oversampling).

Call makesamplel from makesample.c to make the wavenumber sampling.

Call divisors from iomisc.c to calculate the exact divisors of the oversampling factor.

Update progress indicator if sampling was successful.

Return the result of makesamplel.

6.7.5 makeradsample:

This function makes the radius sample. Take values from hint or else from the atmospheric file.
Then the temperature, pressure, mean molecular mass, itostopes’ density, abundance, partition
function, and cross section are also resampled are resampled into an using a linear or spline inter-
polation, in case the radius array differ from the atmospheric radius array (i.e., hint given).

6.7.5.1 Variables Modified:

Call to makesample to set t r . rads values.

Allocate tr.ds.mol.molec.d, tr.ds.mol.molec.q, tr.ds.iso.isov.z (iso-
tope’s density, abundance, partition function).

Settr.ds.atm.tfct, tr.ds.atm.pfctfromtr.ds.at.atm.tfct, tr.ds.at
(atmospheric unit factor for temperature and pressure).

Allocate tr.atm.t, tr.atm.p, tr.atm.mm (transit’s atmospheric temperature, pres-

.atm.pfct

Transit 52

sure, and mean molecular mass).

- Settr.atm.t, tr.atm.p, tr.atm.mminterpolatingtr.ds.at.atmvaluesintotr.rads

sampling.

- Settr.ds.iso.isov.d, tr.ds.iso.isov.q interpolating tr.ds.at.isov values
into t r . rads sampling.

- Settr.ds.iso.isov.c, tr.ds.iso.isov.z interpolating tr.ds.at.isov values
into tr.atm.t array.

- Modify tr.pi to account for TRPI_MAKERAD.

6.7.5.2 Walkthrough:

- Set the reference sampling equal to the atmospheric structure sampling.
- Check that getatm and readinfo_t 11 have been executed.
- If aradius sample has already been generated, free the needed memory and unset the correspond-
ing flag.
- Set flag to define linear or spline interpolation.
- If there is only one reference sampling (atmospheric sampling) point:
- Set all radius sampling parameters to those in the atmospheric radius sampling structure. Al-
locate and set sampling values.
- Set result flag to 0.
- Otherwise, if no hinted radius sampling spacing is given:
- Set all radius sampling parameters to those in the atmospheric radius sampling structure. Al-
locate and set sampling values.
- Set result flag to 0.
- Otherwise call makesample from makesample.c to make the radius sampling.
- Allocate arrays for molecular density and abundance, and set the number of layers for each
molecule.
- Allocate array for partition function and set the number of layers for each isotope.
- Allocate arrays for atmospheric temperature, pressure, and mean molecular mass.
- Call resamplex from sampling.c to interpolate the radius sampling.
- Call resampley from sampling.c to interpolate the atmospheric pressure, temperature, and
mean molecular mass.
- Call resample_free from sampling.c to free the resampling arrays.
- Loop over each database (species):
- Call resamplex from sampling.c to interpolate temperatures from the TLI file.
- Loop over each isotope:
- Call resampley from sampling.c to interpolate the partition function from the TLI file.
- Call resample_free from sampling.c to free the resampling arrays.
- If sampling was successful, update the progress indicator.
- Return the result flag.

6.7.6 makeipsample:

This function makes the impact parameter sampling that determines the radii at which the planet
probed for the transit geometry. Must be a decreasing array. If there is no hinted values, it uses the
reversed radius array.

Transit 53

6.7.6.1 Variables Modified:

- Call to makesample from makesample.c to set t r . ips values.
- Modify tr.pi to account for TRPT MAKEIP.

6.7.6.2 Walkthrough:

If the hinted radius sampling spacing is -1:

- Set impact parameter sampling from radius sampling, but reverse the values array.
Otherwise:

- Create impact parameter sampling from the hinted sampling parameters.

- Create reference impact parameter sampling from the radius sampling.

- Raise an error if the hinted final sampling value is less than the initial sampling value.
- Check that makeipsample, makeradsample have been called.

- Call makesample from makesample.c to create the impact parameter sampling.
If desired, call out sample from makesample.c to print sample information to a file.
Update the progress indicator if sampling was successful.

Return the result flag.

6.7.7 maketempsample:
6.7.7.1 Variables Modified

- Call to makesample from makesample.c to set tr.temps values.
- Update t r . pi to account for TRPI _MAKEIP.

6.7.7.2 Walkthrough

Create temperature sampling from hinted sampling parameters.

Create an empty reference temperature sample.

Raise an error if the final sampling value is less than the initial sampling value.
Call makesample from makesample.c to create the temperature sampling.
Update the progress indicator if sampling was successful.

Return the result flag.

6.7.8 outsample:
6.7.8.1 Walkthrough

Check that a filename exists. If not, return O.

If the filename is default and cannot be opened, raise a warning and return 1.

- Call printsample from makesample.c to print the following sampling structures: wavenum-
ber, wavelength, radius, and impact parameter.

Close the file.

Return O on success.

6.7.9 printsample:
6.7.9.1 Walkthrough

- Print file header.

Transit

Print sampling factor, inital value, final value, and spacing to file.
Print oversampling to file if necessary.

Print number of array elements to file.

Print sampling values array to file.

Transit 55

opacity

s

freemem_opacity

Figure 8: Function structure of opacity.c. The boxes contain function names, and arrows point
from a function to the function it calls. Functions are called from left to right, then top to bottom.
Boxes are color-coded as follows: purple functions are used for eclipse geometry, blue functions
are used for transit geometry, green functions are used in both, and red functions are unused at this
time.

6.8 opacity.c:

This file contains routines which calculate opacities, read opacity files, and write opacity files.
Figure 8 shows the function structure.

6.8.1 List of Functions Defined in opacity.c:

int opacity(struct transit =xtr)
Driver routine to calculate or read the opacity.

int calcprofiles(struct transit =tr)
Calculate a grid of Voigt profiles.

int calcopacity(struct transit xtr, FILE =*fp)
Calculate a grid of opacities and Voigt profiles.

int readopacity(struct transit xtr, FILE xfp)
Read an opacity grid from file.

int extinction(struct transit =*tr, int r, int t)
Calculate the opacity spectrum at a specific layer.

int freemem_opacity (struct opacity =»op, long *pi)
Free index of refraction array.

6.8.2 opacity:
6.8.2.1 Modified

- Copy th.f opainto tr.f opa

6.8.2.2 Walkthrough

- Check that the radius array has been sampled.

Transit 56

Check if an opacity file was specified.

Call fileexistopen to check if an opacity file exists and if so, open it.

Set the opacity file name in the transit structure from the hint structure.

Call readopacity to read the opacity file if it exists.

If the opacity file does not exist:

- Open a file for writing.

- Call calcopacity from opacity.c to calculate Voigt profiles and the opacity grid if re-
quested.

Update the progress indicator to account for TRPI_OPACITY.

Return O on success.

6.8.3 calcprofiles:
6.8.3.1 Modified

Copy tr.ds.th.nDop, tr.ds.th.nLorintotr.ds.op.nDop, tr.ds.op.nLor.

Allocate and set tr.ds.op.abDop, tr.ds.op.aLor equal to logspaces from given mini-

mum and maximum (tr.ds.th.dmin, tr.ds.th.dmax, tr.ds.th.lmin, tr.ds.th.lmax).
Allocate t r.ds.op.profsize (Voigt profile half-size).

Allocate t r.ds.op.profile (Voigt profiles).

Call getprofile fromextinction.ctofillouttr.ds.op.profsize, tr.ds.op.profile.

6.8.3.2 Walkthrough

Make a logscale grid for the profile widths according to given min and max values.

Allocate an array for the profile half-size.

Allocate grid of Voigt profiles.

Loop over all Doppler and Lorentz widths to calculate Voigt profiles

- If the Doppler width is an order of magnitude smaller than the Lorentz width, and this is not
the first calculation performed, set the profile half-size equal to the previous profile(skipping
the calculation)

- Otherwise, call to getprofile in extinction.c to calculate Voigt profile half-size.

Return 0 on success.

6.8.4 calcopacity:
6.8.4.1 Modified

- Copy tr.temp.ninto tr.ds.op.Ntemp.

- Allocate t r.ds . op.temp (temperature array) and copy from tr.temp.v.

- Allocate and evaluate t r . ds . op. z1iso (Partition function for each isotope and temperature).
- Copy tr.rads.ninto tr.ds.op.Nlayer (number of radius layers).

- Allocate t r.ds.op.press (pressure array) and copy from tr.atm.p in CGS units.
- Copy tr.ds.iso.nmol into tr.ds.op.Nmol (number of molecules).

- Allocate tr .ds .op.molID (molecule IDs).

- Add molecule IDs to t r.ds . op.mo11ID if not there.

- Copy tr.wns.ninto tr.ds.op.Nwave (number of wavenumber samples).

- Allocate t r.ds.op.wns and copy from tr.wns. v (wavenumber samples).

- Allocate t r.ds . op. o (4D opacity array).

Transit 57

6.8.4.2 Walkthrough

- Call maketempsample from makesample.c to create a temperature array from hinted values
and put the temperature array in the opacity structure.

- Allocate the partition function array.

- Set the interpolation function flag.

- Interpolate the isotope partition function for each isotope in each database.

- Get pressure array from the transit structure and place in the opacity structure.

- Get molecule array from the transit structure and place in the opacity structure.

- For each molecule, check if its ID is in the molecule ID array. If not, add it.

- Get wavenumber array from the transit structure and place in the opacity structure.

- Allocate the 4-dimensional opacity array ([mol][temp][rad][wn])

- For each radius layer and temperature, call to ext inction in opacity.c to compute extinction.

- Write dimension sizes to file.

- Write molecular ID, temperature, pressure, and wavenumber sampling arrays to file.

- Write the opacity array to file.

- Close the file.

- Return 0 on success.

6.8.5 readopacity:
6.8.5.1 Modified

- Allocatetr.ds.op.molID, tr.ds.op.temp, tr.ds.op.press, tr.ds.op.wns
and fill in from file.
- Allocate t r.ds . op. o and fill in from file.

6.8.5.2 Walkthrough

Read the dimension sizes (number of molecules, temperatures, radius layers, and wavenumbers)
from file.

Allocate molecular ID, temperature, pressure, and wavenumber sampling arrays.

Read molecular ID, temperature, pressure, and wavenumber sampling arrays from file.

Allocate the 4D opacity grid.

Read the opacity grid from file.

Return 0 on success.

Transit 58

interpcs —f- bic ubicinterpolat e

freemem_cs

Figure 9: Function structure of crosssec.c. The boxes contain function names, and arrows point
from a function to the function it calls. Functions are called from left to right, then top to bottom.
Boxes are color-coded as follows: purple functions are used for eclipse geometry, blue functions
are used for transit geometry, and green functions are used in both.

6.9 crosssec.c:

This file contains routines which are used to read the cross-section (CS) files(s) and interpolate the
values therein to the t ransit sampling. Figure 9 shows the function structure of crosssec.c.
6.9.1 List of Functions Defined in crosssec.c:

int readcs (struct transit =*tr)
Read cross-section (CS) info from tabulated files.

int interpolatecs(struct transit =xtr)

int bicubicinterpolate (double xxres, double *xsrc, double xx1, long nxl1,
double xx2, long nx2, double xtl, long ntl,
double xt2, long nt2)

void cserr (int max, char xname, int line)

int freemem.cs(struct cross *cross, long =*pi)

6.9.2 readcs:
6.9.2.1 Modified

- Allocate t r.ds.cross.e (CS extinction array).
- Allocate tr.ds.cross.moll, tr.ds.cross.mol2 (molecule IDs).

Transit 59

- Allocatetr.ds.cross.ntemp, tr.ds.cross.nwave (number of temperatures per file,
number of wavenumbers per file).

- Allocatetr.ds.cross.cs, tr.ds.cross.temp, tr.ds.cross.wn, tr.ds.cross.nspec
(3D CS array, temperature array, wavenumber array, number of species per file).

- Copy tr.ds.th.nfilesintotr.ds.cross.nfiles.

- Fillintr.ds.cross.cs, tr.ds.cross.wn, tr.ds.cross.temp, tr.ds.cross.ntemp,
tr.ds.cross.nwave, tr.ds.cross.moll, tr.ds.cross.mol?2 from file.

- Update t r.pi to account for TRPI_CS.

6.9.2.2 Walkthrough

- Check that radius and wavenumber samples have been made.

- Allocate extinction array in cross-section structure.

- If there are no CS files, return 0.

- Allocate molecule names, molecule IDs, number of molecules in each file, number of tempera-
tures and wavenumber samples per file, and CS array.

- Loop over each CS file:

- Read the file name from the transit hint structure.

- Open the file.

- Skip any comments and blank lines at the top of the file.

- When an ’1’ character is encountered:

- If pointing to a blank space, increment the pointer to the next character.
- Count the number of words in the line. If not 1 or 2, raise an error.
- Loop over each molecule, copy the name of the molecule and find its ID by comparing its
name with the molecule IDs. Raise an error if the molecule from file does not match any
IDs.
- Continue reading the file.
- When a ’t’ character is encountered:
- If pointing to a blank space, increment the pointer to the next character.
Count the number of temperature samples in the file.
Raise an error if no temperature samples are found.
Loop over the temperatures and copy them into the cross-section temperature array.
- Continue reading the file.
- Set the initial value for allocated wavenumber fields.
- Allocate the wavenumber and extinction arrays.
- Begin infinite loop to read in data:

- Increment the pointer past all comments and blank lines.

- Check if the end of the file has been reached. If so, break the loop.

- Check if the number of read wavelengths is equal to the allocated wavenumber fields. If so,
reallocate the array to double its size by bitwise left-shifting the number of fields. A bitwise
left-shift doubles the value.

- Increment the pointer past all blank spaces

- Read in the wavenumber at pointer location.

- Loop over each temperature and copy the corresponding extinction value to the extinction
array.

- Increment looping indices.

- Reallocate the arrays to remove extra rows added when doubling the size.
- Store the extinction array in the cross-section structure.

Transit 60

- Close the file.
- Update the progress indicator to account for TRPI_CS.
- Return 0 on success.
6.9.3 interpcs:
6.9.3.1 Modified

- Fillout tr.ds.cross.e by calling bicubicinterpolate for each cross-section file.

6.9.3.2 Walkthrough

Allocate temporary temperature and wavenumber arrays.

Reset cross-section opacity to zero.

Allocate temporary array for opacity.

Set tempoarary temperature and wavenumber arrays from the transit structure.

For each cross-section file:

- Callbicubicinterpolate from crosssec.c to interpolate CS data to the wavenumber and
temperature sampling.

- Get density profiles of isotopes from molecular information structure.

- Calculate cross-section absorption coefficients at each radius and wavenumber.

Free temporary arrays.

Return O on success.

6.9.4 bicubicinterpolate:
6.9.4.1 Walkthrough

- Set the first and last values of the source array.

- Check that the sampling regions match. If not, return 0.

- Find indices where the target array is within the source array boundaries (so that the result is an
interpolation, not an extrapolation).

- Call splinterp_pt from spline.c to perform cubic interpolation over the first index.

- Call splinterp_pt from spline.c to perform cubic interpolation over the second index.

- Free temporary arrays.

- Return 0.

Transit 61

freemem_idexrefrac

Figure 10: Function structure of idxrefrac.c. The boxes contain function names, and arrows point
from a function to the function it calls. Functions are called from left to right, then top to bottom.
Boxes are color-coded as follows: purple functions are used for eclipse geometry, blue functions
are used for transit geometry, green functions are used in both, and red functions are unused at this
time.

6.10 idxrefraction.c:

This file is concerned with calculating the index of refraction at each radius level. Currently this is
1 at all layers (no light bending). Functions restidxref, saveidxref are unused. Figure
?? shows the function structure of idxrefraction.c

6.10.1 List of Functions Defined in idxrefraction.c:

int idxrefrac(struct transit =tr)
Calculates the index of refraction. Currently, it sets an index of refraction of 1.0 at all levels (no
light bending).

int freemem_idexrefrac (struct idxref *ir, long =*pi)
Free index of refraction array.

int restidxref (FILE xin, PREC_NREC nrad, struct idxref =*ir)
Restore hints structure, the structure needs to have been allocated before.

void saveidxref (FILE *out, PREC_NREC nrad, struct idxref =*ir)
Write index of refraction values to file pointed by out.

6.10.2 idxrefrac:

6.10.2.1 Variables Modified

- Allocate and set values of tr.ds . ir.n (Index of refraction per radius array)
- Update t r . pi to account for TRPI _IDXREFRAC.

6.10.2.2 Walkthrough

- Call to transitcheckcalled in transitstd.c to check that makeradsample has been
called.

- Allocate index of refraction array.

- Loop over each radius layer:

Transit

- Call to stateegnford from transit.h to calculate density.
- Calculate index of refraction (currently always 1).
- Return 0 on success.

62

Transit 63

Figure 11: Function structure of extinction.c. The boxes contain function names, and arrows point
from a function to the function it calls. Functions are called from left to right, then top to bottom.
Boxes are color-coded as follows: purple functions are used for eclipse geometry, blue functions
are used for transit geometry, green functions are used in both, and red functions are unused at this
time.

6.11 extinction.c:

This file contains routines associated with computing molecular extinction. That includes a wrap-
per function to calculate Voigt profiles, a function to compute molecular extinction, and a function
to interpolate the molecular extinction. There are also functions which compute extinction from
other sources (computeextscat, computeextcloud) although they are not fully imple-
mented. Functions savefile_extinct, restfile_extinct, restextinct are un-
used. Figure 11 shows the function structure of extinction.c.

6.11.1 List of Functions Defined in extinction.c:

inline int getprofile (PREC_VOIGT =x»*pr, int vf, PRECRES dwn, PREC.VOIGT dop,
PREC_VOIGT lor, float ta)
Driver to calculate a Voigt profile.

void savefile extinct (char xfilename, PREC_RES *xe, _Bool xc, long nrad,
long nwav)
Saving extinction for a possible next run

void restfile extinct (char xfilename, PREC_RES **xe, _Bool xc, long nrad,
long nwav)
Restoring extinction for a possible next run

int extwn (struct transit =*tr)

Transit 64

void printone (struct transit xtr)

int freemem_extinction(struct extinction xex, long x*pi)

int restextinct (FILE *xin, PREC_NREC nrad, short niso, PREC_NREC nwn,
struct extinction xex)

int computemolext (struct transit »tr, PRECNREC r, PREC.RES *xkiso)

int interpolmolext (struct transit *tr, PREC.NREC r, PREC_RES x*xkiso)

void computeextscat (double xe, long n, struct extscat xsc, double =xrad,
double trad, double xtemp, double tcft, double wn)

void computeextcloud(double *e, long n, struct extscat =*sc, double =xrad,
double trad, double xtemp, double tcft, double wn)

6.11.2 getprofile
6.11.2.1 Variables Modified

Allocate op.profile (*¥*pr).

6.11.2.2 Walkthrough

- Find the largest width between Doppler and Lorentz

- Calculate the range for computation in half-widths.

- Calculate the number of points in the profile.

- Check that the profile contains at least 3 elements. If not, set to 3.

- If the profile is larger than the wavenumber range, shrink the profile.

- Allocate the profile array.

- Calculate the Voigt profile using a width that gives and integer number of dwn spaced bins. See
Equations 3, 4.

- Return the number of points in half the profile.

Transit 65

6.11.3 extwn:

6.11.3.1 Modified:

Copy tr.ds.th.ethreshinto tr.ds.ex.ethresh (extinction threshold).

Allocate tr.ds.ex.e (extinction).

Allocate tr.ds.ex.computed (boolean to indicate if extinction has been computed at the
corresponding radius layer).

Update t r . pi to account for TRPI _EXTWN.

6.11.3.2 Walkthrough:

Check that readinfo_t1li, readdatarng, makewnsample, makeradsample have
been executed.

Set extinction coefficient threshold from transithint structure.

Allocate extinction coefficient array.

Allocate boolean for checing if extinction has been computed.

Update progress indicator to account for TRPT_EXTWN.

6.11.4 computemolext:

This routine computes the molecular extinction coefficient (e,,, in cm™') at one specific atmo-
spheric radius, Equations (3.36)—(3.37) of P. Rojo’s thesis (see also Equation ??). Initially, the
code calculates the Doppler and Lorentz line-broadening widths (Equations 3 and 4), to later cal-
culate the Voigt profile.

6.11.4.1 Modified

Calculate t r . ds . ex . e (Extinction coefficient) for the given radius layer.
Set tr.ds.ex.computed of given radius to True.

6.11.4.2 Walkthrough

Allocate alpha Lorentz and Doppler arrays.

Allocate Lorentz and Doppler width indices arrays

Allocate arrays for max and min extinction for each species.

Allocate a temporary extinction array.

Calculate the dynamic wavenumber sampling interval and the oversampled dynamic wavenum-

ber sampling interval.

Calculate constant factors for Doppler and Lorentz line widths.

Allocate arrays for the Doppler and Lorentz line widths and arrays for line width indices.

Loop over each isotope.

- Loop over each molecular species.
- Calculate the isotope’s collisional cross-section with this molecule and add the resulting

Lorentz width to the Lorentz width for this isotope.

- Multiply by the constant factor to get the Lorentz width for this isotope.

- Calculate the Doppler width divided by the central wavenumber (because Doppler width is
wavenumber-dependent).

- Find the maximum between the Lorentz width and Doppler width.

Transit 66

Find the minimum between this maximum and the previously calculated minimum (this mini-
mum is set to the maximum between the widths on the first iteration).

Call binsearchapprox from iomisc.c to perform a binary search to find the indices of the
Doppler and Lorentz widths in the Doppler and Lorentz width samples.

- Set oversampling resolution by looping through the exact divisors of the oversampling factor
until the divisor times the spacing of the finest oversampling is greater than half the width of the
smallest profile.

- Loop over every line to calculate the maximum extinction coefficient for each molecule.

Calculate the wavenumber of the line transition.

Skip calculation for this line transition if it is not within the given limits.

Calculate the extinction coefficient except the broadening factor (this is proportional to the
extinction).

If the maximum extinction for this molecule has not been calculated yet, set it equal to the
extinction coefficient that was just calculated. Otherwise, set the maximum and minimum ex-
tinction for this molecule equal to the maximum and minimum between the recently calculated
extinction and the previously calculated maximum and minimum.

- Loop over each line to calculate extinction coefficients.

Calculate the wavenumber of the line transition.

Skip calculation for this line transition if it is not within the given limits.

Calculate the extinction coefficient. (FINDME: reference equation)

Find the index of the closest oversampled wavenumber.

Check if the next line falls within the same sampling unit (same sampling index). If so, co-add
the next line with the current line (add the next line’s extinction to the opacity for this line) and
skip the next line’s calculations.

If the extinction for this line is less than the defined threshold factor times the maximum
extinction, disregard this line and continue to the next.

Calculate the closest dynamic sampling wavenumber.

Check if the ratio of Doppler width to Lorentz width is greater than a given threshold. If so,
call to binsearchapprox to do a binary search to recalculate the index for the Doppler
width. If not, then the exact width of the Doppler profile is unimportant and the calculation is
skipped.

Calculate the offset between the center of the line and the dynamic wavenumber sample (in
units of oversampled wavenumber spacing).

Calculate the offset between the edge of the profile and the beginning of the wavenumber array
(in units of oversampled wavenumber spacing).

Calculate the lower and upper indices of the profile (in units of dynamically sampled wavenum-
ber)

Fix the lower and upper indices to the boundaries if they go outside the bounds of the wavenum-
ber sampling.

Add the contribution from this line (and any co-added lines) to the opacity spectrum.

- Call downsample to downsample the temporary extinction array to the final sampling size and
fill in the extinction array for this radius.

- Free all temporary arrays.

- Update the boolean that indicates extinction has been computer for this layer.

- Return 0 on success.

Transit 67

6.11.5 interpolmolext:
6.11.5.1 Modified

Fillintr.ds.ex.e.
Set the radius index of tr.ds.ex.computed equal to 1.

6.11.5.2 Walkthrough

Perform a binary search to find the index of grid-temperature immediately lower than layer
temperature.
Loop over wavenumber
- Loop over molecules
- Calculate extinction coefficient by linear interpolation of the opacity grid between the index
found by the binary search and the next one.
- Call valueinarray to find the index of the molecule.
- Add the extinction for this molecule to extinction
Update boolean to show extinction has been computed.
Return O on success.

6.11.6 computeextscat:

6.11.6.1 Modified

Fill out scattering extinction array (passed to function, not found in any structures).

6.11.6.2 Walkthrough

- Loop over each radius layer. Set scattering extinction to O at all layers.

6.11.7 computeextcloud:

6.11.7.1 Modified

Fill out cloud extinction array (passed to function, not found in any structures).

6.11.7.2 Walkthrough

- If there are no clouds, set the cloud extinction array to zero everywhere.

- Calculate the amount of extinction per distance due to the clouds.

- Loop down through the radius layers, setting the cloud extinction to O until reaching the clouds.

- Loop down through the radius layers, starting from the top of the clouds, setting the cloud ex-
tinction to a linearly increasing amount according to the extinction per distance until reaching
the bottom of the clouds.

- Loop through the remaining radius layers, setting the cloud extinction to the total extinction due
to clouds.

68

Figure 12: Function structure of tau.c. The boxes contain function names, and arrows point from a
function to the function it calls. Functions are called from left to right, then top to bottom. Boxes
are color-coded as follows: purple functions are used for eclipse geometry, blue functions are used
for transit geometry, green functions are used in both, and red functions are unused at this time.

6.12 tau.c:

This file contains all routines associated with calculation of optical depth. Functions detailout,
outdebtauex, outdebex, and outdebtau are unused. Functions print2dArrayDouble,
printldArrayDouble are generic print-to-file functions that are not generally used in t ransit.
Figure 12 shows the function structure of tau.c. (FINDME: reference the equation in BART the-
ory doc)

6.12.1 List of Functions Defined in tau.c:

int init_optdepth (struct transit =tr)
Initialize the optical depth structure for eclipse and transit geometry.

int tau(struct transit =xtr)
Calculate the extinction coefficient and optical depth as a function of layer/impact parameter and
wavelength.

int detailout (prop.samp *wn, prop.samp *rad, struct detailfld =xdet,
PREC_RES *xarr, short flag)

Transit 69

void printtoomuch (char *xfile, struct optdepth *tau, prop.samp xwn,
prop_samp =*rad)

int freemem_tau(struct optdepth *xtau, long =pi)

void outdebtauex (char xname, PREC_RES xxe, prop.samp *ip, PREC_RES x*xt,
long rn, long w)

void outdebex (char *name, PREC_RES %xe, PRECRES xr, long rn, long wi,
long wf)

void outdebtau(char xname, prop_samp *xip, PREC_RES *xt, long wi, long wf)

6.12.2 tau:

Main routine where the extinction coefficient and the optical depth are calculated. This function
sets up the optical depth parameters and then calls to the computeextradius and totaltau
subroutines to do the calculations.

In the code, transittau or eclipsetau is pointed by the variable fcn. transittau
is defined in the transit_ray_solution slantpath variable at the end of slantpath.c.
eclipsetauisdefinedinthe transit_ray_solution eclipsepath variable at the end
of eclipse.c. slantpath isassigned to the transit variable t r . so1 in the function acceptgenhints
from argum. c.

6.12.2.1 Variables Modified:

- Copy tr.save.ext from th.save.ext (extinction output filename).

- Call to init_optdepth to initialize tr.tau.

- Settr.cl.cloudext, tr.cl.cloudtop, tr.cl.cloudbottom (Cloud maximum
opacity, top layer radius, layer radius of cloudext).

- Call to computemolext or interpolmolext to calculate tr.ds.ex.e (extinction coef-
ficient).

- Calltoeclipsetauor transittauto calculate tr.tau.t (optical depth).

- Settr.tau.lastiftr.tau.t > toomuch (radius index of last calculated tau).

- Callto savefile_extinct tostore tr.ds.ex.e infile.

- Call to printtoomuch to store the radius where the optical depth reached toomuch.

- Callto freemem_lineinfotrans tofree tr.ds. 11 (line info struct).

Transit 70

Callto freemem_localextinctionto free tr.ds.ex.e and related static variables (ex-
tinction coefficient).
Update t r . p1i to account for TRPI_TAU.

6.12.2.2 Walkthrough:

Store the height of each layer (eclipse) or impact parameter (transit) starting from the outermost
layer in local variable h.

Check that there are enough radius layers for interpolation (4+). If not, raise an error.

Check that idxrefrac and extwn functions have been called.

Pass TAU flags from transithint structure to transit structure.

Declare arrays for cloud and scattering extinction (per wavenumber).

Call to restfile_extinct from extinction.c to restore extinction save file (if requested).
Compute molecular extinction at the outermost layer.

Start loop, over wavenumber, to calculate the extinction:

- Compute the scattering and cloud extinction for all layers at given wavenumber.

- Start loop, over the layers/impact parameters:

- Check if the molecular extinction has been calculated at this layer. If not, callto interpolmolext
(if an opacity file exists) or computemolext (if there is no opacity file and there is a TLI
file) from extinction.c calculate it for all wavenumbers at this layer.

- Calltransittauoreclipsetau (asfcn) to calculate the optical depth at given wavenum-
ber and layer/impact parameter. See Equation 1.

- If the optical depth reached toomuch, end the layer/impact-parameter loop.

- Call to savelDarray from tau.c to save total extinction, cloud extinction, and scattering
extinction if requested.

Callto savetau, saveCIA, savemolExtion from tau.c to print to file the 2D arrays of

tau, extinction, and CIA if requested. Call to closeFile from iomisc.c to close these files.

Call to detailout from argum.c to print detailed output of optical depth, extinction, and CIA

to file if requested.

Call to printtoomuch from tau.c to print to file the lowest layer/impact parameter reached

before optical depth reached toomuch.

Update the progress indicator.

Return O on success.

6.12.3 init_optdepth:
6.12.3.1 Variables Modified:

Initialize tr.ds.tauvand tr.ds.intens.
Set tr.tau.toomuch from th.toomuch (max optical depth to calculate).
Allocate tr.tau.t, tr.tau.last (optical depth and index of toomuch).
Allocate t r.ds.intens. a (intensity grid).

6.12.3.2 Walkthrough:

Allocate the optical depth structure.

Pull maximum optical depth from transithint structure into optical depth structure.
Allocate array for the layer index where tau reaches toomuch (max optical depth).
Allocate the optical depth array

Transit 71

- Allocate the intensity grid structure and intensity array if using eclipse geometry.
- Return 0 on success.

6.12.4 detailout:
6.12.4.1 Walkthrough:

Check that there a file name has been given.

Perform a binary search to find the indices of the requested wavenumbers.
Print wavenumber.

Print radii and corresponding value.

Close the file.

Return 0 on success.

6.12.5 freemem_tau:
6.12.5.1 Variables Modified:

- Free tau.t and tau.last.
- Update t r . pi to remove for TRPI_TAU.

Transit 72

Figure 13: Function structure of eclipse.c. The boxes contain function names, and arrows point
from a function to the function it calls. Functions are called from left to right, then top to bottom.
Boxes are color-coded as follows: purple functions are used for eclipse geometry, blue functions
are used for transit geometry, and green functions are used in both.

6.13 eclipse.c:

This file contains routines associated with calculating flux from an eclipse. This includes calculat-
ing optical depth at each wavenumber and incident angle, emergent intensity at each wavenumber,
emergent intensity over all wavenumbers, and flux over all angles. Figure 13 shows the function
structure of eclipse.c.

6.13.1 List of Functions Defined in eclipse.c:

static PREC_RES eclipsetau(struct transit xtr, PREC_RES height, PREC_RES xex)
Computes optical depth for eclipse geometry for one ray and one wavenumber at various incident
angles on the planet surface, between a certain layer in the atmosphere up to the top layer.

static PREC_RES eclipse_intens (struct transit *tr, PREC.RES xtau, PREC.RES w,
long last, double toomuch, prop_.samp =xrad)
Calculates emergent intensity for one wavenumber.

int emergent_intens (struct transit *tr)
Driver function that calculates emergent intensity for the whole range of wavenumbers at various
points on the planet.

int flux(struct transit =tr)
Calculates flux by integrating intensity over predefined angles.

void printintens (struct transit =*tr)
Print (to file or stdout) the emergent intensities as a function of wavelength for each angle.

void printflux(struct transit =tr)
Print (to file or stdout) the flux as a function of wavenumber.

Transit 73

freemem_localeclipse ()

freemem_intensityGrid(struct grid *intens, long xpi)

6.13.2 eclipsetau

6.13.2.1 Walkthrough

- Use a binary search to find the index of the sampled radius immediately below or equal to the
height.

- Check if the sampled radius is the outer layer, and if so return 0.

- Move pointers to the location of height.

- Check that there are sufficient points for spline integration. If not, create them halfway between
the given points.

- Calculate the distance along the path for each radius.

- Allocate auxillary arrays for integration.

- Call to makeh from spline.c to calculate spacing array for integration.

- Call to geth from spline.c to calculate auxillary integration arrays.

- Call to simps from spline.c to perform Simpson’s integration of the extinction along the light
path.

- Return optical depth per unit radius.

6.13.3 eclipse_intens:
6.13.3.1 Walkthrough

- Calculate the Planck blackbody function for each radial layer. See Equation 7.

- Calculate the transmission function for each layer of the planet. This is the integrand of the
integral in Equation 8.

- After tau reaches toomuch, fill remaining layers with O flux.

- Check that there are enough points for Simpson’s integration.

- Allocate auxillary arrays for integration.

- Call to makeh from spline.c to calculate spacing array for integration.

- Call to geth from spline.c to calculate auxillary integration arrays.

- Call to simps from spline.c to perform Simpson’s integration of optical depth up to the maxi-
mum optical depth to calculate intensity. See Equation 8.

- Return integration result (intensity).

6.13.4 emergent_intens:

6.13.4.1 Variables Modified

Call eclipse_intens tocalculate tr.ds.intens. a (intensity[angle][wn]).
Update t r . pi to account for TRPT _MODULATION.

Transit 74

6.13.4.2 Walkthrough

Calleclipse_intens from eclipse.c as sol.spectrum to calculate the intensity at every wavenum-
ber.

Update the progress indicator to account for TRPTI_MODULATION

Call printintens from eclipse.c to print the emergent intensity as a function of wavenumber

to file.

Return 0 on success.

6.13.5 flux:
6.13.5.1 Variables Modified

- Allocate t r.ds . out . o (emergent flux)
- Calculate t r . ds . out . o (flux). See Equation 9.

6.13.5.2 Walkthrough

Allocate area grid and fill (local variable).
Allocate array for emergent flux.

Calculate flux from intensity grid and area.
Call freemem_localeclipse to free area grid.
Call printflux to print the flux.

Return O on success.

Transit 75

Figure 14: Function structure of slantpath.c. The boxes contain function names, and arrows point
from a function to the function it calls. Functions are called from left to right, then top to bottom.
Boxes are color-coded as follows: purple functions are used for eclipse geometry, blue functions
are used for transit geometry, and green functions are used in both.

6.14 slantpath.c:

This file contains routines that calculate tau at a specific impact parameter and wavenumber, and
routines that calculate modulation for a specific wavenumber. totaltau2, which is intended to
calculate tau taking into account a variable index of refraction, is unused and untested. Figure 14
shows the function structure of slantpath.c.

6.14.1 List of Functions Defined in slantpath.c:

static PREC_RES totaltaul (PREC_RES b, PREC_RES =xrad, PREC_RES refr,
PREC_RES *ex, long nrad)

Compute the light path and optical depth at a given impact parameter and wavenumber, for a

medium with constant index of refraction.

static PREC_RES totaltau2 (PREC_RES b, PREC_RES =xrad, PREC_RES xrefr,
PREC_RES =*ex, long nrad)

Compute the light path and optical depth at a given impact parameter and wavenumber, for a

medium with variable index of refraction.

static inline PREC_RES transittau(PREC_RES b, PREC_RES *rad, PREC_RES xrefr,
PREC_RES *ex, long nrad, int exprlevel)
Driver function to calculate the optical depth at a given impact parameter at a specific wavenumber.

static PREC_RES modulationperwn (PREC_RES xtau, long last, double toomuch,
prop_samp *ip, struct geometry =sg,
int exprlevel)

Driver function to calculate the modulation in/out-of-transit ratio for a single wavenumber.

static PREC_RES modulationl (PREC_RES =xtau, long last, double toomuch,
prop_samp *ip, struct geometry =*sqg)
Calculate the transit’s modulation at a given wavenumber for no-limb darkening nor emitted flux.

static inline PREC_RES modulationml (PREC_RES =xtau, long last, double toomuch
prop_samp *ip, struct geometry =xsqg)

Calculate the modulation at a given wavenumber, considering the planet as an opaque disc of ra-

dius r = r(tau=toomuch), for no-limb darkening nor planet emission.

Transit 76

6.14.2 totaltaul:

6.14.2.1 Walkthrough:

Calculate the minimum distance of the ray path to the center of the planet (r0).

Get the index (rs) of the sampled radius below or equal to r0.

Move the extinction and radius pointers to rs.

Calculate the extinction coefficient at the closest approach radius by parabolic interpolation.

If there are only two elements in the extinction and radius arrays, create a 3rd temporary element
between the two values.

Calculate the distance along the lightray path.

Allocate auxillary arrays for integration.

Call to makeh from spline.c to calculate spacing array for integration.

Call to geth from spline.c to calculate auxillary integration arrays.

Call to simps from spline.c to perform Simpson’s integration to calculate the optical depth by
integrating the extinction along the ray path (up to the closest approach). See Equation 1.

Reset the original values of the extinction and radius arrays (in case of 2 elements).

Return the result of integration to account for full multiplied by 2.

6.14.3 totaltau2:

6.14.3.1 Walkthrough:

Warn user that this routine is untested (and surely will not work).

Calculate the minimum distance of the ray path to the center of the planet (r0).
Get the index (rs) of the sampled radius below or equal to r0.

Move the radius pointer to the element corresponding to the sampled radius index.
Calculate the analytical part of the extinction integral.

Allocate auxillary arrays for integration.

Call to makeh from spline.c to calculate spacing array for integration.

Call to geth from spline.c to calculate auxillary integration arrays.

Call to simps from spline.c to perform Simpson’s integration to calculate the optical depth by
integrating if there are at least 3 points available. See Equation 1.

Return the result of integration multiplied by 2 to account for full path.

6.14.4 transittau:

6.14.4.1 Variables Modified:

Settr.taulevel from th.taulevel (Constant or variable index of refraction per layer).

6.14.4.2 Walkthrough:

Read the taulevel flag to determine a constant or variable index of refraction.
Call to totaltaul or totaltau2 depending on taulevel.
Return the value given by totaltaul or totaltau?2.

Transit 77

6.14.5 modulationl:

6.14.5.1 Walkthrough:

Get the stellar radius.

Calculate integrand of modulation. See Equation 6.

Add a layer with an integrand value of 0.

Raise an error if there are not enough points for integration.

Allocate auxillary arrays for integration.

Call to makeh from spline.c to calculate spacing array for integration.
Call to geth from spline.c to calculate auxillary integration arrays.
Call to simps from spline.c to perform Simpson’s integration of the integrand along radius.
Subtract the total area blocked by the planet.

Adjust the result if the planet is transparent.

Normalize to the stellar radius.

Return the modulation.

6.14.6 modulationm]1:

6.14.6.1 Walkthrough:

If toomuch was not reached, return -1.

Find the impact parameter before and after tau reached toomuch.

Use linear interpolation to calculate planet radius.

Calculate and return the modulation assuming the planet is an opaque disc (R*R2,).

6.14.7 modulationperwn:

6.14.7.1 Variables Modified:

Set tr.modlevel from th.modlevel.

6.14.7.2 Walkthrough:

Read the modlevel flag to calculate the modulation using the optical-depth per impact parameter
(modulationl) or an opaque disk of radius r = r(tau=toomuch).

Call to modulationl ormodulationml depending on modlevel.

Return the value given by modulationl ormodulationml.

Transit 78

Figure 15: Function structure of observable.c. The boxes contain function names, and arrows point
from a function to the function it calls. Functions are called from left to right, then top to bottom.
Boxes are color-coded as follows: purple functions are used for eclipse geometry, blue functions
are used for transit geometry, and green functions are used in both.

6.15 observable.c:

This file contains modulat ion, a routine which uses modulationperwn to calculate modu-
lation at each wavenumber. Figure 15 shows the function structure of observable.c.

6.15.1 List of Functions Defined in observable.c:

int modulation (struct transit =*tr)

void printmod(struct transit =tr)

int freemem_ outputray (struct outputray =xout, long xpi)

6.15.2 modulation
6.15.2.1 Variables Modified

- Allocate t r.ds . out . o (modulation output).

- Call to setgeom from geometry.c to calculate t r.ds .sg.x, tr.ds.sg.y (coordinates of
the center of the planet with respect to the star).

- Call to modulationperwn to calculate t r.ds . out . o (modulation).

6.15.2.2 Walkthrough

- Allocate modulation output.

- Check that tau, makeipsample, and makewnsample functions have been called.

- Call setgeom to calculate X and Y values (center of the planet with respect to the star). Note
that these values are not currently used by the function, and are intended to be used to account
for limb-darkening.

- Callmoldulationperwn as sol.spectrum from slantpath.c to calculate modulation.

- Update the progress indicator to account for TRPT _MODULAT ION.

- Call printmod to print the modulation to file.

Transit 79

7 Equations
Optical depth:

. / ¢ ds (1)
where e is extinction and ds is the differential path element.

Extinction:

7T€2 Pi gfl hCEliow hCﬂé 1)
n = Zm. - m 2 5P\ T L=exp | 57 v, ap, aw), @)

where e,, is extinction, g f is the weighted oscillator strength, Z; is the partition function, 77} is the
central wavenumber of the line, £ is the lower state energy level, T is the atmospheric temper-
ature, p; is the isotopic density, m; is the isotopic mass, VU is the Voigt line profile (the convolution
of Doppler and Lorentz profiles) with arguments of central wavenumber (), Doppler width (ap),
and Lorentz width («). k is the Boltzmann constant, / is the Planck constant, and c is the speed

of light.

Doppler and Lorentz widths:

V2ET In2 1y
ap = (3)
C A/
propto_adop

+ ay 4)
—~—

ignored

propto_alor

where ap is Doppler width, o, is Lorentz width, % is the Boltzmann constant, 7" is atmospheric
temperature, c is the speed of light, 7y is central wavenumber, m; is isotopic mass, o. is isotopic
cross section, p; is isotopic density, and oy is natural broadening (negligible).

Density:

i1 P _ P
where p; is the mass mixing ratio, m is mass, P is pressure, k is the Boltzmann constant, 7" is
temperature, and where m = m/n, the mean molecular mass in the layer.

1 R
M, = T <R2 —2 / exp ") rdr> (6)
* 0

where IR, is the stellar radius, 7, is optical depth at a particular wavelength as a function of radius,
and R is the planetary radius.

Pi

Modulation:

Transit 80

Planck function for wavenumbers:

B, = 2hi*c? (7N

exp(,:f;) -1

where v is wavenumber, h is the Planck constant, c is the speed of light, kg is the Boltzmann

constant, and 7’ is temperature.

Emergent intensity:
I = / B,e 7dr ()
0

where B, is the Planck blackbody function and 7 is optical depth. The integral is from 0 to
tr.toomuch.

Flux:
F =Y n((sinfy;,)* — (sinf;)°))
=1

where [is intensity, A is area, n is the number of angles, and w,, is the number of wavenumbers.

Hydrostatic pressure:
P dz

P H
where P is pressure, z is height, and H is scale height.

(10)

	1 Introduction
	2 List of Headers used by transit
	3 List of Custom Variable Types in transit DONE
	4 List of Constants in transit DONE
	5 List of Structures in the transit Files
	5.1 Structure Types
	5.2 Structures

	6 List of Functions in the transit Files
	6.1 transit.c
	6.1.1 List of Functions Defined in transit.c
	6.1.2 transit_init
	6.1.2.1 Walkthrough

	6.1.3 get_no_samples
	6.1.3.1 Walkthough

	6.1.4 get_waveno_arr
	6.1.4.1 Walkthrough

	6.1.5 set_radius
	6.1.5.1 Variables Modified
	6.1.5.2 Walkthrough

	6.1.6 run_transit
	6.1.6.1 Walkthrough

	6.1.7 do_transit
	6.1.7.1 Variables Modified
	6.1.7.2 Walkthrough

	6.1.8 free_memory
	6.1.8.1 Walkthrough

	6.1.9 main
	6.1.9.1 Walkthrough

	6.2 transitstd.c:
	6.2.1 List of Functions Defined in transitstd.c
	6.2.2 tr_output_fcn:
	6.2.2.1 Walkthrough

	6.2.3 tr_output_vfcn:
	6.2.3.1 Walkthrough

	6.2.4 fileexistopen:
	6.2.4.1 Walkthrough

	6.2.5 verbfileopen:
	6.2.5.1 Walkthrough

	6.2.6 transitcheckcalled:
	6.2.6.1 Walkthrough

	6.2.7 error:
	6.2.7.1 Walkthrough

	6.3 argum.c:
	6.3.1 List of Functions Defined in argum.c:
	6.3.2 processparameters:
	6.3.2.1 Variables Modified:
	6.3.2.2 Walkthrough:

	6.3.3 acceptsoltype:
	6.3.3.1 Walkthrough

	6.3.4 acceptgenhints:
	6.3.4.1 Variables Modified
	6.3.4.2 Walkthrough:

	6.3.5 savehint:
	6.3.5.1 Walkthrough

	6.3.6 resthint:
	6.3.6.1 Variables Modified
	6.3.6.2 Walkthrough

	6.3.7 freemem_hints:
	6.3.7.1 Variables Modified
	6.3.7.2 Walkthrough

	6.4 geometry.c:
	6.4.1 List of Functions Defined in geometry.c:
	6.4.2 setgeomhint
	6.4.2.1 Modified
	6.4.2.2 Walkthrough

	6.4.3 setgeom
	6.4.3.1 Modified
	6.4.3.2 Walkthrough

	6.4.4 starvariation
	6.4.4.1 Walkthrough

	6.5 readlineinfo.c:
	6.5.1 List of Functions Defined in readlineinfo.c:
	6.5.2 readlineinfo:
	6.5.2.1 Variables Modified
	6.5.2.2 Walkthrough

	6.5.3 readinfo_tli:
	6.5.3.1 Variables Modified
	6.5.3.2 Walkthrough

	6.5.4 readtli_bin:
	6.5.4.1 Variables Modified
	6.5.4.2 Walkthrough

	6.5.5 checkrange:
	6.5.5.1 Walkthrough

	6.5.6 readdatarng:
	6.5.6.1 Variables Modified
	6.5.6.2 Walkthrough

	6.5.7 datafileBS:
	6.5.7.1 Walkthrough

	6.5.8 setimol:
	6.5.8.1 Variables Modified
	6.5.8.2 Walkthrough

	6.6 readatm.c:
	6.6.1 List of Functions Defined in readatm.c:
	6.6.2 getatm:
	6.6.2.1 Variables Modified:
	6.6.2.2 Walkthrough:

	6.6.3 checkaddmm:
	6.6.3.1 Walkthrough

	6.6.4 getmnfromfile:
	6.6.4.1 Variables Modified

	6.6.5 readatmfile:
	6.6.5.1 Variables Modified
	6.6.5.2 Walkthrough

	6.6.6 getmoldata:
	6.6.6.1 Variables Modified
	6.6.6.2 Walkthrough

	6.6.7 reloadatm:
	6.6.7.1 Variables Modified
	6.6.7.2 Walkthrough

	6.6.8 radpress:
	6.6.8.1 Variables Modified
	6.6.8.2 Walkthrough

	6.7 makesample.c:
	6.7.1 List of Functions Defined in makesample.c:
	6.7.2 makesample1:
	6.7.2.1 Walkthrough

	6.7.3 makesample:
	6.7.3.1 Walkthrough

	6.7.4 makewnsample:
	6.7.4.1 Variables Modified:
	6.7.4.2 Walkthrough

	6.7.5 makeradsample:
	6.7.5.1 Variables Modified:
	6.7.5.2 Walkthrough:

	6.7.6 makeipsample:
	6.7.6.1 Variables Modified:
	6.7.6.2 Walkthrough:

	6.7.7 maketempsample:
	6.7.7.1 Variables Modified
	6.7.7.2 Walkthrough

	6.7.8 outsample:
	6.7.8.1 Walkthrough

	6.7.9 printsample:
	6.7.9.1 Walkthrough

	6.8 opacity.c:
	6.8.1 List of Functions Defined in opacity.c:
	6.8.2 opacity:
	6.8.2.1 Modified
	6.8.2.2 Walkthrough

	6.8.3 calcprofiles:
	6.8.3.1 Modified
	6.8.3.2 Walkthrough

	6.8.4 calcopacity:
	6.8.4.1 Modified
	6.8.4.2 Walkthrough

	6.8.5 readopacity:
	6.8.5.1 Modified
	6.8.5.2 Walkthrough

	6.9 crosssec.c:
	6.9.1 List of Functions Defined in crosssec.c:
	6.9.2 readcs:
	6.9.2.1 Modified
	6.9.2.2 Walkthrough

	6.9.3 interpcs:
	6.9.3.1 Modified
	6.9.3.2 Walkthrough

	6.9.4 bicubicinterpolate:
	6.9.4.1 Walkthrough

	6.10 idxrefraction.c:
	6.10.1 List of Functions Defined in idxrefraction.c:
	6.10.2 idxrefrac:
	6.10.2.1 Variables Modified
	6.10.2.2 Walkthrough

	6.11 extinction.c:
	6.11.1 List of Functions Defined in extinction.c:
	6.11.2 getprofile
	6.11.2.1 Variables Modified
	6.11.2.2 Walkthrough

	6.11.3 extwn:
	6.11.3.1 Modified:
	6.11.3.2 Walkthrough:

	6.11.4 computemolext:
	6.11.4.1 Modified
	6.11.4.2 Walkthrough

	6.11.5 interpolmolext:
	6.11.5.1 Modified
	6.11.5.2 Walkthrough

	6.11.6 computeextscat:
	6.11.6.1 Modified
	6.11.6.2 Walkthrough

	6.11.7 computeextcloud:
	6.11.7.1 Modified
	6.11.7.2 Walkthrough

	6.12 tau.c:
	6.12.1 List of Functions Defined in tau.c:
	6.12.2 tau:
	6.12.2.1 Variables Modified:
	6.12.2.2 Walkthrough:

	6.12.3 init_optdepth:
	6.12.3.1 Variables Modified:
	6.12.3.2 Walkthrough:

	6.12.4 detailout:
	6.12.4.1 Walkthrough:

	6.12.5 freemem_tau:
	6.12.5.1 Variables Modified:

	6.13 eclipse.c:
	6.13.1 List of Functions Defined in eclipse.c:
	6.13.2 eclipsetau
	6.13.2.1 Walkthrough

	6.13.3 eclipse_intens:
	6.13.3.1 Walkthrough

	6.13.4 emergent_intens:
	6.13.4.1 Variables Modified
	6.13.4.2 Walkthrough

	6.13.5 flux:
	6.13.5.1 Variables Modified
	6.13.5.2 Walkthrough

	6.14 slantpath.c:
	6.14.1 List of Functions Defined in slantpath.c:
	6.14.2 totaltau1:
	6.14.2.1 Walkthrough:

	6.14.3 totaltau2:
	6.14.3.1 Walkthrough:

	6.14.4 transittau:
	6.14.4.1 Variables Modified:
	6.14.4.2 Walkthrough:

	6.14.5 modulation1:
	6.14.5.1 Walkthrough:

	6.14.6 modulationm1:
	6.14.6.1 Walkthrough:

	6.14.7 modulationperwn:
	6.14.7.1 Variables Modified:
	6.14.7.2 Walkthrough:

	6.15 observable.c:
	6.15.1 List of Functions Defined in observable.c:
	6.15.2 modulation
	6.15.2.1 Variables Modified
	6.15.2.2 Walkthrough

	7 Equations

