REVIEW LECTURE

Follow-up
EXAM CHECKS MATERIALS

- DIELECTRICS
 - ENERGY IN CAPACITOR
 - RESISTANCE, CURRENT, CIRCUITS
 - KIRCHHOFF'S LAW
 - MAGNETIC FIELD
 FORCE ON MOVING CHARGE, FORCE ON WIRE

DIELECTRICS

DIELECTRIC CONSTANT k

INCREASES CAPACITANCE BY FACTOR OF k

EXAMPLE

\[\text{Elec} = C_0 \times 2 \]

ELECTRIC FIELD INSIDE IS REDUCED BY FACTOR OF 2
\[E_{\text{infinite}} = \frac{\sigma}{2 \varepsilon_0} \]

\[V = \frac{\sigma d}{2 \varepsilon_0} \]

\[Q = CV \]

\[\phi_a = \frac{\sigma d}{2 \varepsilon_0} \frac{C}{2} \]

\[\frac{2 \varepsilon_0}{d} \approx C \]

\[\text{which is a factor of 2 larger} \]

\[\text{Energy stored in capacitor} \]

\[\frac{1}{2} CV^2 = \frac{1}{2} \frac{Q^2}{C} \]
CAPACITORS IN PARALLEL OR SERIES

\[C_T = C_1 + C_2 \]

\[\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} \]

CAPACITANCE CALCULATIONS

CAPACITANCE MEANS IF YOU PUT VOLTAGE \(V \) ACROSS IT YOU MOVE EXACTLY \(Q \) TO CREATE IT

\[Q = -Q \]

\[CV = Q \] Always
CIRCUITS

KIRCHHOFF'S RULES AND RESISTANCE

\[R = \frac{\sigma \ell}{A} \]

\[\sigma = \frac{1}{\rho} \]

Given a wire:
- Resistance drops if area is increased.
- Resistance increases if length is increased.

KIRCHHOFF'S RULE

1) Voltage drop across the entire loop must equal zero.

2) Current must be conserved.
Time Dependent Voltage in Circuits

\[V(t) = V e^{-\frac{t}{RC}} \]
\[V_0 = V_0 e^{-\frac{t}{RC}} \]

Time constant is \(\tau = RC \).

\[R = 2.73 \]

Think about this

At \(t = 0 \)

Capacitor voltage

Use a short circuit

At \(t = \infty \)

Resistor voltage

I = \(\frac{V}{R} \)

Capacitor voltage like open circuit.
MAGNETIC FIELD

1 TESLA = 10,000 GAUSS

EARTH ~ 0.5 GAUSS

\[\vec{F}_B = q \vec{v} \times \vec{B} \]

WE ALSO SAY

\[I = q v d n = n q v d \]

\[\vec{F}_D = I \vec{L} \times \vec{B} \]

OR

\[\vec{F} = I \vec{L} \times \vec{B} \]

RIGHT HAND RULE IS REQUIRED HERE
DIRECTION OF CURRENT:

\[V \]

which way?

\[\text{de}^- \]

\[+ \text{h}^+ \]

\[\rightarrow \text{e}^- \]

\[\text{I} \]

Note on dependence.

Example How does capacitance dependent on area in a parallel plate capacitor

\[C = \frac{\varepsilon_0 A}{d} \]

\[C \propto A \]

Dependence of Res is Twice on Length of the Wire
How to measure resistance

Voltmeter, Ammeter

How to measure voltage?