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1. Carnot cycle: Two identical bodies with temperature independent heat capacities C are
initially at different temperatures Ty and Tc. A Carnot cycle is run between them (with
infinitesimal steps) until they have been reduced to a common temperature Tr. [15 points]

a) Does the efficiency of this engine change over time? [5 points]
NS
b) In a Carnot cycle, the entropy change is zero per cycle as we saw in the previous exam.

Find Tr in terms of Ty and Tc. The answer is not (Tu+Tc)/2. Consider the entropy change in
the hot and cold reservoir: these have to be equal. Integrate from initial temperatures to

find the solution. [5 points]
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¢) Find the total work done on the outside world in this process. Is it positive or negative?
[5 points] ‘
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gure below. We note that efficiency can be given
ded. Relevant temperatures are Ti, Tz, Ts.

ble adiabatic process). [15 points]

2. Consider a Lenoir cycle as given by the fi
by (Heat added)-(Heat rejected)/Heat ad

(Isentropic process = reversi
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. (b) When is heat being added? [2.5 points]
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(c) When is heat being rejected? [2.5 points]

(d) Calculate efficiency in ter
involved) [5 points] [Hint: Cy=

ms of Ty, Tz, and Ts. as well as Nk [assumé monoatomic gas is
3/2 Nk, Cp=5/2Nk, dU+pdV = AH = CpAT]
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3. Manipulation of thermodynamic quantities [15 points]

In a weakly interacting gas of Bose particles at low temperature the expansion coef-
ficient o and the isothermal compressibility Kr are given by
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where g, b and ¢ are constants. It is known that the pressure goes to zero in the limit
of large volume and low temperature. Find the equation of state P(T,V).

Hint: You may ﬂse that (dP/dT) at constant volume =c/Kr
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4. Consider a simple harmonic oscillator with energy given by E = nhw, where w is a
constant given by sqrt (k/m). [15 points]

(a) Calculate its partltlon function. You may utilize this formula below to simplify your
infinite sum. Zm, __e_ [3points]
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(b) What is its energy at some temperature T? [3 points]
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(c) What is the meaning of <n>? (Average n) It is not an occupation number. [3 points]

f #*
<t7 v |puEeiBE SR rgj
K’

(d) Calculate heat capac1ty of this simple harmomc osc1llator [3 pomts]
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(e) Calculate heat capacity at high temperature (kT>> hw) [3 points]
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5. If a partition function for a single particle is given by Z, find out the partition function for
N particles [15 points]

(a) provided that they are distinguishable particles [7.5 points]
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(b) provided that they are indistinguishable particles [7.5 points]
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6. Consider a system composed of N spins in which energy levels are defined to be -UB, 0,
UB and magnetic moment is for these levels are given by i, 0, -d.
(a) What is the partition function? [3 points] :
v LY 2
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(b) What is the probability of finding a spin with magnetic moment of 0 at infinite
temperature? [3 points]
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(cj What is the average energy for this system? [3 points]-
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(d) What is the Helmholtz free energy of this system? |3 points]
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7. Consider a system consisting of a single hydrogen atom/ion, which has two possible
states: unoccupied with no electrons and occupied with one electron present. i.e.
unoccupied state has zero energy with zero electrons and occupied state has ener@@nd
has one electron in it with a chemical potential of@Calculate the ratio of the probability of
these two states. You may use p=-kT In(V/NVq) to simplify the formula. Simplify such that
there is only one exponential in the final ratio. You can assume that electrons behave like
an ideal gas (PV=NKT). Use only P, Vo, k, T, I to express the ratio. [15 points]
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8. Calculate the densities of states for a 1D electron gas given that the allowed k vectors are
k=(21r/L)*m with m being all integers. Hints: 1. calculate the density of states in therms of
k, 2. use the energy formula (hk)2/2m, 3. use N = 2* 2k*D(k) [10 points]
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