
Final Exam

Name:

6 charges (+q) are held in a hexagonal arrangement by some plastic. Each side of the hexagon has length a.

- (a) Calculate the net force (magnitude and direction) on the charge +Q at the center of hexagon
- (b) Calculate the force (magnitude and direction) on the charge +Q if the charge indicated by a red circle is removed.

Consider a uniformly charged sphere of radius R. The charge density is given by ρ/m^3 .

Calculate electric field (magnitude and direction) for

- (a) r>R
- (b) r<R

Calculate voltage (assuming V=0 at r=infinity) for

- (a) r>R
- (b) r<R

a)
$$r > R$$
 RENC = $\frac{4\pi e^{3}}{3}$?

 $4\pi r^{2} = \frac{9R^{3}P}{3F_{0}}$
 $E = \frac{9R^{3}P}{3F_{0}r^{2}}$

b)
$$r \in \mathbb{R}$$
 $Q_{GNC} = \frac{4\pi r^3}{3}$?

 $q_{GNC} = \frac{4\pi r^3}{3}$?

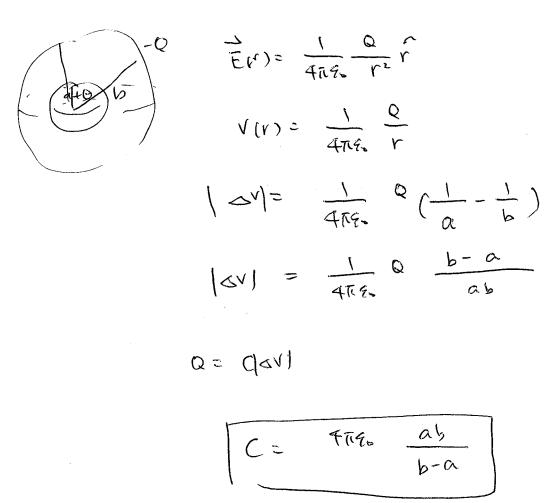
 $q_{GNC} = \frac{4\pi r^3}{3}$?

 $q_{GNC} = \frac{9r}{3}$?

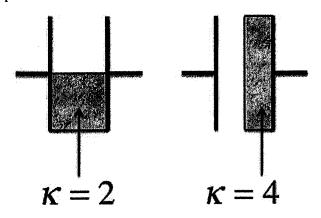
c)
$$Y > R$$
 $\nabla V = -E$

$$V = \frac{g R^3}{3R_0 r} + C C = 0$$

$$V(r) = \frac{g R^3}{3E_0 r}$$


d)
$$r < R$$
 $\frac{\partial V}{\partial r} = -E$

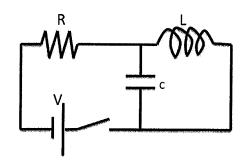
$$V(r) = -\frac{\beta r^2}{660} + \frac{\beta R^2}{260}$$


$$V = -\frac{\beta r^2}{360} + C$$

$$-\frac{\beta R^2}{660} + C = \frac{\beta R^2}{360} \left[1 + \frac{1}{2}\right] = \frac{\beta R^2}{260}$$

Calculate the capacitance of a spherical capacitor, which is composed of two spheres (one inside another), with inner radius a and outer radius b.

Parallel capacitors are half filled by dielectric materials as shown below. (a) calculate the capacitances in terms of ϵ_0 , A, d. (b) Which capacitor has higher capacitance?


(a)
$$\frac{q_0A}{2d}$$
 parameter ADD

 $\frac{q_0A}{2d} + \frac{q_0A}{2d} = \frac{3q_0A}{2d} = Crother = 1.5 \stackrel{q_0A}{2d}$

$$\frac{1}{C7} = \frac{d}{29-A} + \frac{d}{89-A} = \frac{5d}{89-A}$$

$$C7 = \frac{89-A}{5d} = 1.69-A$$

\$ b) RIGHT CAPACITOR.

At t=0, the switch is closed.

- (a) Calculate the current sourced by the battery at t=0
- (b) Calculate the current sourced by the battery at t=infinity
- (c) what is the voltage across the capacitor at t=infinity
- (d) After a long time, the switch is released. Calculate the current through the capacitor as a function of time after the switch is released.

a)
$$t=0$$
 $\frac{\sqrt{}}{R} = I$

d)
$$f(M_{W}) = M_{W} \frac{V}{R} \cos \omega t$$

poste

Consider a cylindrical wire with radius R with current I flowing through it. Calculate magnetic field for

- (a) r>R
- (b) r<R

assuming that current is uniformly distributed

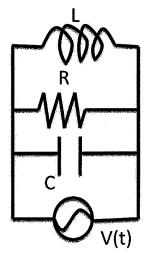
a)
$$2\pi r B = M \cdot I$$

$$B = \frac{M \cdot I}{2\pi r}$$

b)
$$2\pi r B = \mu^2 \frac{\Gamma^2}{R^2}$$

$$B = \frac{\mu_0 L r}{2\pi R^2}$$

Consider a coaxial cable as depicted below. Calculate the inductance per unit length for the cable if the inside wire has the diameter of a and the outside wire has a diameter of b.


$$\frac{\mu \sigma I}{2\pi r} = B$$

$$\frac{\partial u^{3}}{\partial t} = \int_{a}^{b} \frac{\mu \sigma I l}{2\pi r} dr = \frac{\mu \sigma I l}{2\pi} \ln(\frac{b}{a})$$

$$\frac{\partial u^{3}}{\partial t} = \frac{\mu \sigma I l}{2\pi} \ln(\frac{b}{a}) \frac{dI}{dt}$$

$$\frac{L}{2} = \frac{\mu \sigma I l}{2\pi r} \ln(\frac{b}{a})$$

$$\frac{L}{2} = \frac{\mu \sigma I l}{2\pi r} \ln(\frac{b}{a})$$

Find the complex impedance for the parallel RLC circuit as shown. Assume that we have a voltage source for which we can adjust the angular frequency ω . $V(t)=V_{max}cos(\omega t)$.

- (a) Find the total complex impedance of the circuit
- (b) Calculate I(ω).
- (c) Find an expression for the phase φ.
- (d) Given R=500 ohms, L= 1 henry, C=1.0 μ F and ω =100 rad/sec. Will the current lag or lead voltage and by how much?

$$\frac{1}{2\pi\pi} = \frac{1}{R} + i \left(\omega C - \frac{1}{\omega L}\right)$$

$$\frac{1}{2T} = \frac{1}{R} + i \left(\omega C - \frac{1}{\omega L}\right)$$

$$\frac{1}{R} + i \left(\omega C - \frac{1}{\omega L}\right)$$

$$\frac{1}{R^2} + (\omega C - \frac{1}{\omega L})^2$$

b)
$$|z_{71}| = \sqrt{\frac{1}{R^{2}} + (\omega c - \frac{1}{\omega c})^{2}} = \sqrt{\frac{1}{R^{2}} + (\omega c - \frac{1}{\omega c})^{2}}$$

c)
$$\phi = . \tan^{-1} \left(\frac{-(\omega c - \frac{1}{\omega c})}{\frac{1}{k}} \right) = \tan^{-1} \left(\frac{\frac{1}{\omega c} - \omega c}{\frac{1}{k}} \right)$$

d)
$$\phi = \tan^{3}\left(\frac{1}{100} - 1\times10^{4}\right) = \tan^{3}(5)$$

LAG VOLTAGE