2049c Exam 1

SOLUTION

Name:

PID:

Useful formulas

$$\begin{split} \vec{E} &= -\vec{\nabla}V \\ \vec{F} &= \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \hat{r} \end{split}$$

In capacitors, Q = CV, where C is the capacitance

1

2

3

4

5

Total

Problem 1: Consider a **conducting** sphere of radius a, charged to +Q.

Calculate electric field (magnitude and direction) for

(a) r>a

(b) r<a

Calculate voltage (take V=0 at r=infinity) for

(a) r>a

(b) r<a (Hint: make certain that V(a) matches from inside sphere and outside sphere. i.e. voltage here has to be continuous)

(c) Why is the voltage continuous at r=a?

Problem 2 Consider a charged sphere with charge distribution $\rho(r)=Dr$ (C/m³) [where D is some constant] and radius a. (Hint: $dV=4\pi r^2 dr$) Calculate electric field (magnitude and direction) for

QENC =
$$\int_{0}^{\alpha} Dr \, 4\pi r^{2} dr = \pi D r^{4} \int_{0}^{\alpha} = \pi D a^{4}$$

$$E \cdot A = E \cdot 4\pi r^{2} = \frac{\pi D a^{4}}{\epsilon_{0}}$$

$$E = \frac{D a^{4}}{4\epsilon_{0} r^{2}} r^{7}$$

QENC =
$$\pi D V^4$$

$$E = \frac{\pi D V^4}{8\pi}$$

$$E = \frac{\pi D V^4}{8\pi}$$

Calculate voltage (take V=0 at r=infinity) for

(a) r>a

$$V(r) = \int -\frac{Da^4}{4\epsilon_0 r^2} dr = \frac{Da^4}{4\epsilon_0 r} + C \qquad C=0$$

$$V(r) = \frac{Da^4}{4\epsilon_0 r}$$

(b) r < a (make certain that V(a) matches from inside sphere and outside sphere. i.e. voltage here has to be continuous)

$$V(v) = -\int \frac{Dv^{2}}{4\pi s} dv = -\frac{Dv^{3}}{12E_{0}} + C$$

$$V(a) \text{ FIRST-BE} = \frac{Da^{3}}{4\pi s}$$

$$5. \quad C = \frac{Da^{3}}{4E_{0}} + \frac{Da^{3}}{12E_{0}} = \frac{1}{3} \frac{Da^{3}}{E_{0}}$$

$$V(v) = \frac{Da^{3}}{3E_{0}} - \frac{Dv^{3}}{12E_{0}}$$

Problem 3: Calculate the capacitance per unit length (C/L) of a cylindrical capacitor, which is composed of two concentric infinite cylinders (one inside another), with inner radius a and outer radius b.

$$E = \sum_{q=0}^{\infty} E \cdot z \pi r L = Q$$

$$= \sum_{q=0}^{\infty} \frac{Q}{2\pi q_{-} r L}$$

$$|\Delta v| = \int_{2\pi q_{-} r L}^{\infty} \frac{Q}{2\pi q_{-} r L} \int_{0}^{\infty} \frac{Q$$

Problem 4:

As shown q_1 , q_2 , and q_3 are equally spaced with distance d between them. q_3 experiences no forces. Find q_1 in terms of q_2 .

Problem 5: Consider a spherical capacitor, which is composed of two spheres (one inside another), with inner sphere having radius a and outer sphere having radius b. Inside sphere is charged to +Q and outer sphere is charged to -Q.

(a) Calculate the voltage of the inside sphere with respect to the outer sphere.

(b) How much work must be done to take an electron with charge -1.6×10^{-19} C from outer sphere to inner sphere? [note: in this problem, sign error will be scored as a wrong answer]