

Origin and isotopic composition of water in fluid inclusions from meteorites

Yurimoto, H., Itoh, S., Zolensky, M. E., Kusakabe, M. and Karen, A.

> Hokkaido U., NASA JSC, U.Toyama, TRC

> > Micrograph of halite from Zag

Introduction

- The origin of water of inner solar system objects is an unsolved issue because those were mainly accreted inside of a snow line.
- On the other hand, we have become increasingly aware of the isotopic characteristics of water for the various occurrences.
- Hydrogen isotopic composition of water is determined by hydrous minerals because they are alteration products from anhydrous minerals by interactions with water.

H isotopic compositions in the solar system

- Large variations of δD have been observed in hydrous minerals from chondrites.
- Comet and interstellar water is highly D-rich.
- High δD signature of hydrous minerals is a heritage of cloud or outer solar disk chemistry.
- Low δD signature of hydrous minerals is a heritage of pristine water of asteroids (e.g. Robert, 2006).

Introduction

- The origin of water in inner solar system objects is an unsolved issue because those were mainly accreted inside of a snow line.
- On the other hand, We have become increasingly aware of the isotopic characteristics of water for the various occurrences.
- Hydrogen isotopic composition of water is determined by hydrous minerals because they are alteration products from anhydrous minerals by interactions with water.
- Oxygen isotopic composition of extraterrestrial water is determined by aqueous alteration of metals and sulfides, e.g., by magnetite (Choi et al. 1998, Sakamoto et al., 2007).
- The oxygen isotopic compositions of these water tend to be depleted in ¹⁶O.

Oxygen isotopic composition of Cosmic Symplectite (COS)

Oxygen isotopic composition of Cosmic Symplectite (COS)

Murchison CM2

kture of Acfer 094

Introduction

- The origin of water in inner solar system objects is an unsolved issue because those were mainly accreted inside of a snow line.
- On the other hand, We have become increasingly aware of the isotopic characteristics of water for the various occurrences.
- Hydrogen isotopic composition of water is determined by hydrous minerals because they are alteration products from anhydrous minerals by interactions with water.
- Oxygen isotopic composition of extraterrestrial water is determined by aqueous alteration of metals and sulfides, e.g., by magnetite (Choi et al. 1998, Sakamoto et al., 2007).
- The oxygen isotopic compositions of these water tend to be depleted in ¹⁶O.
- A problem is that isotopic correlations between H and O cannot directly be demonstrated because most minerals do not dominant in water-origin H and O at the same time.

Δ^{17} O vs δ D of Solar System Water

 Here We present Hydrogen and Oxygen isotopic compositions by direct measurement of asteroidal aqueous fluid, and discuss the origin of water of inner solar objects.

Asteroidal Water samples

Zag H3-6

Imm

From http://www.nyrockman.com/science/zag.htm

Asteroidal Water samples

Monahans (1998) H5

Zag H3-6

Isotope analysis

Sample chamber: 10⁻⁷Pa

Cryo-sample-stage for Cameca ims-1270

Sputtering Crater and Exposed Fluid Inclusion

Crater depth: 50µm

δD of OC Asteroidal Fluid

 Hydrogen isotopes of OC asteroidal aqueous fluid have widely distributed over -400 to +1300 ‰.

δD of OC Asteroidal Fluid

$\Delta^{17}O$ of OC Asteroidal Fluid

- OC asteroidal fluid is under disequilibrium for oxygen isotopes.
- The distribution shifts to ¹⁶O-poor direction.
- The ¹⁶O-depletion is larger in asteroidal aqueous fluid than the aqueously altered magnetite.

$\Delta^{17}O_{15}vs_{10}\delta D$ of OC Asteroidal Fluid

The isotopic variations seem to be explained by mixing between primary asteroidal water and cometary water.

$\Delta^{17}O_{15}vs_{10}\delta D$ of OC Asteroidal Fluid

The isotopic variations seem to be explained by mixing between primary asteroidal water and cometary water.

$\Delta^{17}O_{15}vs_{10}\delta D$ of OC Asteroidal Fluid

- The isotopic variations seem to be explained by mixing between primary asteroidal water and cometary water.
- Monahans data can be interpreted by a result of water-rock interaction.

D/H ratios of lunar water suggest that acquisition of cometary water is important not only for asteroidal water but also for terrestrial planet water (Greenwood et al., 2011).

Conclusions

- Hydrogen and Oxygen isotopic compositions of asteroidal aqueous fluid trapped in halide crystals from ordinary chondrites have been determined by SIMS using cryo-sample-stage.
- The wide variations of H and O isotopic compositions indicate that isotope equilibria were under way in the asteroidal fluid before trapping into halite.
- The asteroidal water is D-rich and ¹⁷O-¹⁸O-rich, suggesting acquisition of cometary water (pristine nebular water) onto the asteroidal primary water.
- The self-shielding model support that the isotopic compositions of asteroidal primary water is formed in the inner solar nebula as water vapor which originally proposed by Deloule et al. (1998).
- The nebular water vapor would be incorporated on planetesimals as ice when the snow line moved inside of I AU.
- The acquisition of cometary water during planet formation modified the isotopic compositions of planetary water towards heavier direction.