Soft X-ray Spectromicroscopy in Environmental Science

Brian Tonner, UW-Milwaukee

"Scientific Directions at the Advanced Light Source: Environmental and Earth Sciences"

- Description of research programs
- The role of soft x-ray spectroscopy and spectromicroscopy
- Needs that could be met by the ALS

Research Programs in Environmental Bio-physics with Soft X-ray Synchrotron Radiation

Natural and Accelerated **Bioremediation Research**

DOE/OBER

UW-Milwaukee JPL/Cal Tech **Stennis Space Center** CXRO, ALS/LBNL

UWM WATER Institute

Episodic Events, Great Lakes Experiment

NSF

DOE, Materials Sciences

UW-Milwaukee ALS, CXRO/LBNL

ALS Workshop on Environmental and Earth Sciences: March 23-25 1998. -Brian Tonner -2-

Environmental Research with Soft X-rays

- Spectroscopy of liquids: transition metal ion speciation
- Composition of bio-minerals (surface and "bulk")
 - Micro-nodules and macro-nodules
 - Microbially induced corrosion of stainless steels
 - Suspended sediment particles
 - "Green rust" and related "exotic" TM compounds
- High resolution imaging of mineral-microbe interactions
 - Clays, fully hydrated
 - (Mn,Fe) oxidizers and reducers
- Atomic structure of adsorbates on mineral surfaces
 - Transition metals and actinides on oxide surfaces
 - Mineral-water interfaces
- Astro-biology: spectromicroscopy of extraterrestrial minerals

Spectromicroscopy reveals unanticipated environmental chemistry.

Mn Distributions in Micronodules ^{J. Ro} Produced by Bacterial Bio-mineralization Un

J. Rothe, E. M. Kneedler, B. P. Tonner T. Grundl, K. H. Nealson University of Wisconsin-Milwaukee

ALS Workshop on Environmental and Earth Sciences: March 23-25 1998. -Brian Tonner -4-

ALS Workshop on Environmental and Earth Sciences: March 23-25 1998. -Brian Tonner -5-

Spectroscopy of environmental compounds to identify atomic structure

The "Green Rust" problem

Mixed valence Fe(II,III) compounds have been proposed as surface species on soil particles, clays, and in some man-made precipitates. We have identified a unique soft x-ray spectroscopic signature for these compounds.

E.M. Kneedler1, J. Rothe1, K.W. Weissmahr2, K. Pecher3 and B.P. Tonner11Dept. Of Physics, University of Wisconsin-Milwaukee2Dept. Of Civil & Environmental Engineering, UC, Berkeley3Dept. Of Hydrology, University of Bayreuth

Soft x-ray techniques are well suited to the study of natural specimens.

ALS Workshop on Environmental and Earth Sciences: March 23-25 1998. -Brian Tonner -6-

Spectromicroscopy of Fe-doped hydrated clays

Image of hexagonal alumino-silicate clay particle doped with Fe, wet.

- Can image clay micro-crystals in natural, hydrated state.
- Can determine distribution of dopant atoms, and determine the chemical species in the hydrated state.

High resolution imaging of spatial relationships between minerals and microorganisms

J. Rothe1, W. Meyer-Ilse3, T. Grundl2, K. H. Nealson2 and B. P. Tonner1 1Dept. of Physics, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201, USA 2Center for Great Lake Studies, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201, USA 3Center for X-ray Optics, Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA

Fig 4: Images of a mixture of manganite needle particles and bacteria, taken at a wavelength that shows only the mineral (646 eV, LEFT) and at a wavelength that shows only the bacteria (517 eV, RIGHT).

60601017

Fig. : X-ray micrograph of *S. Putrefaciens* oxidizing bacteria (dark ellipses) creating Mn-oxide precipitates (lighter material). Field-of-view 10 microns.

IMAGES FROM CXRO XM-1

ALS Workshop on Environmental and Earth Sciences: March 23-25 1998.

-Brian Tonner -8-

ALS Workshop on Environmental and Earth Sciences: March 23-25 1998. -Brian Tonner -9-

Atomic structure of adsorbates on mineral surfaces

Application of sophisticated surface science structural techniques to interfaces of environmental importance.

XPD images of the S 2p core level of clean PbS(001).

Angle-Resolved Photoemission Study of Galena E.M. Kneedler1, S. Banerjee1, E. Rotenberg2, and B.P. Tonner1 Mineral-water interfaces

 Actinides and transition metals on oxides

High energy XPD pattern (Al K) of the Pb 4f core-level.

ALS Workshop on Environmental and Earth Sciences: March 23-25 1998.

-Brian Tonner -10-

X-ray Spectromicroscopy Experimental Needs in Environmental Sciences

- Spatial resolution (a microbe is 1 micron)
- Spectral resolution and spectral coverage for speciation (0.1 eV)
- Sample environments that are relevant (high pressure, aquatic)

10 Microns	Tribology (friction and wear) Domains in alloys, small crystals Corrosion		
1 Micron	Microbes (bacteria, algae) Soil fractions, clay particles		
0.1 Micron	Composite interfaces, Microelectronics defects, Mineral-microbe interfaces, Microbial corrosion		
100 Angstroms	Single proteins, spectroscopic/functional labels Artificial nanostructures Magnetic domain walls		

Variable surface sensitivity is needed: this means multiple analytical techniques

ALS Workshop on Environmental and Earth Sciences: March 23-25 1998. -Brian Tonner -12-

Sub-micron Resolution, Spectroscopic X-ray microscopes in the U.S.*†

OPERATIONAL

Location	Туре	Energy	Scientific program	Total	Outside	Demand
		Range		time/year	user/year	factor
NSLS X1 STXM	ZP, XAS	250-600 eV	1. Biology 2. Polymers 3.	36 weeks	18	>2X
			Soils 4. Exobiology		weeks/year	> 211
NSLS X1 Cryo-	ZP, XAS	250-600 eV	Cell biology	9 weeks	2	NEW
STXM					weeks/year	
NSLS X1 SPEM	ZP, XPS	250-600 eV	Materials/surface science	32 weeks	8	NEW
					weeks/year	
ALS 7.0 XAM	ZP, XAS	150-1000 eV	1. Materials science 2.	20	10	2V
			Environment 3. Biology			эл
ALS 7.0 XPM	ZP, XPS	150-1000 eV	Materials/surface science	20	10	
APS 2ID-D/E	ZP, XAS,	2-35 keV	Materials science and	18	5	NEW
SRI-CAT	XRD, XRF,		biology			
	PCI					
APS 2ID-B	ZP, XAS,	0.5 - 4 keV	Materials science and	17	4	NEW
SRI-CAT	Holography		biology			

Realistic demand: Estimates from NSLS are based on need for up to 1000 images, accumulated at the rate of about 20 per day. Estimates from ALS are based on allocating 20 8-hour shifts (about 3 weeks) to each proposal currently granted beamtime.

*DoE labs only †Contacts: NSLS-Kirz and Jacobsen; ALS-Tonner; APS-Wenbin Yun

Under Construction

Location	Туре	Scientific Program
APS PNC-CAT	Capillary	
APS UNI-CAT	ZP, KB	30% time share
ALS	Schwarzschild	'MAXIMUM'
ALS	X-PEEM	Magnetic microscopy

Operating microscopes provide 57 beam-weeks per year of access.

ALS Workshop on Environmental and Earth Sciences: March 23-25 1998. -Brian Tonner -13-

Sub-micron X-ray Spectroscopic Microscopy: some predictions

•A period of rapid growth in applications is now starting.

-The user friendliness of instruments is improving.

-The word is getting out (successful applications).

•Significant new user communities are now appearing.

-Cryo-microscopy of biological samples

-Environmental specimens (mineral-microbe, mineral-water)

•There is a huge, built-in user community for nano-ESCA

-1000's of ESCA, 100's of 'small-spot', dozens of 'micro-ESCA' installations in the U.S.

-Environmental science, materials research, corrosion engineering, microelectronics.

CLAIM: One of the main 'problems' with this field in the next 5 years will be due to not having enough beam-time at all available U.S. installations to meet the needs of even the highly ranked projects. This will lead to a lack of ability to follow-through on projects of major importance in both materials science and environmental sciences.

What can ALS do that is unique?

- The ALS has the brightest soft x-ray undulators in the world
- Soft x-ray undulators make the best sources for spectromicroscopy
- Even now, there is not a dedicated beamline for soft x-ray spectromicroscopy.

Conclusion: Build it.