
The Three Principle Soft X-ray Spectroscopies

X-ray Absorption Fine Structure (XAFS)

X-ray Fluorescence Spectroscopy (XRF)

X-ray Photoemission Spectroscopy (XPS)



Photoemission spectroscopy: experimental system



Terminology of Photoemission Spectroscopy

XPS: x-ray photoelectron spectroscopy. Used to determine 
binding energies of core-levels. These binding energies shift 
with chemical state (chemical-shift).

UPS: ultra-violet photoelectron spectroscopy. Used to measure 
binding energies of valence orbitals.

ARPES: angle-resolved photoemission spectroscopy. Measures 
the intensity of valence band features as a function of emission
angle, which can be used to determine band-structure.

XPD: x-ray photoelectron diffraction. Measures the intensity of 
core-level features as a function of emission angle, which can 
be used to determine surface structure.



Basic model of photoemission physics



Energy conservation: measure binding energies



A typical X-ray Photoelectron Spectrum
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The inelastic mean-free-path for an electron: 
Physical origin of surface sensitivity in electron spectroscopy

Primary electrons
(elastic)

Secondary electrons
(inelastic)

MFPλ

The minimum in the mean-free-path is as small as a single atomic layer.



Variable surface sensitivity by tunable photon energy: 
Case of pyrite (FeS2)
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X-ray Photoelectron Diffraction (XPD)

• A powerful tool for determining the atomic structure of surfaces
• Precision of bond-length measurement is about 0.02 Angstrom
• Source of electrons is known: determined by XPS binding energy
• Theory is a multiple-scattering theory; certain experimental conditions 
permit a single-scattering interpretation
• Has been used as a form of quantum holography: direct data inversion



Experimental XPD Patterns
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XPD of Mn/Ni, ESCA (MgKαα, hνν=1253.6 eV)

Ni Auger, Ni substate Mn 2p, 3 ML MnNi 
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An XPD Diffraction “Volume”
Cu(100)
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XPD for surface structure determination: The case of Si(100)c4x2
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S1-XPD (left) and MS simulations (right) at hv=140 and 160 eV. 
Dimer atoms only (Atom 1)



Si(100)c4x2: Dimers and Substrate

Fig.5 S4-XPD (left) and MS simulations (right) 
at hv=145 and 160 eV. Emitters are those 
silicon atoms in the second layer substrate 
labeled as ATOM 4.

Fig.4 S1-XPD (left) and MS simulations 
(right) at hv=140 and 160 eV. Emitters are
dimer atoms at upper positions labeled as 
ATOM 1. In this figure, we only show the 
comparison at two energies.



Photoelectron Holography: Analogy to Optical Holography
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Method of Photoelectron Holography Inversions

•Barton Algorithm

•Synchrotron Data

•Improvements
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•Scattering factor, phase (SWIFT)

• s/d ratio (shift)
• Polarization (asymmetry)



XPH example: Mn on Ni(100)
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Direct inversion of XPD volumes, 
using a model called “photelectron 
holography.” The case of Mn atoms 
on a Ni(100) substrate is shown.
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Energy bands and Fermi Surfaces in solids

From Eli Rotenberg, Berkeley-Stanford Summer School 2001 



Angle-Resolved Photoemission Spectroscopy (ARPES):
A way to directly measure band-structure

• Conservation of energy: determine energy position of bands
• Conservation of parallel momentum: determine momentum position
• Symmetry selection rules: determine parity of band

From Eli Rotenberg, Berkeley-Stanford Summer School 2001 



Measurement of energy bands by scanned-angle ARPES

From Eli Rotenberg, Berkeley-Stanford Summer School 2001 



Example: Cu(100)

From Eli Rotenberg, Berkeley-Stanford Summer School 2001 



ARPES of a single crystal of PbS (galena)



Resonant Photoemission
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Mechanism of resonant photoemission

LUMO

Energy Levels

HOMO

C 1s

Eg

C
on

du
ct

io
n 

B
an

d
V

al
en

ce
 B

an
d

C
or

e
Le

ve
l

­ 4 eV

Absorption Profile

 T
ot

al
 y

ie
ld

300295290285

Photon Energy

C 1s edge

Valence Band

 I
nt

en
si

ty

-30 -20 -10 0

Binding Energy

hν=250 eV

XAS

XPS

Two paths to the same final state



Transitions in Resonant Photoemission
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X-ray Absorption 
Spectroscopy

Note the increases in 
absorption at characteristic 
energies.
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