SYLLABUS FOR PYTHON SECTION OF COURSE

References

The on-line source is http://www.python.org. Various useful materials are also available for download locally at http://photon.physics.ucf.edu/Public/Python. For guidance on special projects, there are many resources in the “Vaults of Parnussus,” http://www.vex.net/parnussus.

Installing Python on a PC

Your CD-ROM contains the necessary files to install Python. It also has many useful tools, and documentation.

You should copy the file Python-2.1.2.exe from the Python21 directory onto your computer desktop. Double click it to install Python version 2.1.2 (CAREFUL: there are different versions on your CD-ROM, use the right one).

Also install the following packages (in the order listed):

Numeric-20.3.win32-py21.exe

win32all-140.exe

wxPython-2.2.5-21.exe

When Python is installed, copy the folder “UCF” into the Python21 folder.

There is a folder called “Documentation” on the CD-ROM, which has useful PDF files in it. You can leave it on the CD-ROM, or copy it to your Python directory to access the files.

	WEEK
	TOPIC

	March 18
	Introduction to structured programming and Objects

	March 25
	Communicating with the Serial and Parallel Ports (Com2: and Lpt1:)

	April 1
	Internet communication for Data Acquisition; Calling other Apps

	April 8
	Data Acquisition (DAQ) programming of stepper motor and DVM

	April 15
	DAQ programming techniques: data plotting, display, control panels

	April 22
	Completion of DAQ system for optical monochromator

ASSIGNMENTS

	
	ASSIGNED
	DUE
	TOPIC

	1
	March 20
	March 27
	Python functions and classes, simple plots

	2
	March 27
	April 3
	I/O through ports; Reading a DVM

	3
	April 3
	April 10
	Remote DAQ through the internet; “Web-Temp”

	4
	April 10
	April 17
	Instrument control-Monochromator

	5
	April 17
	End of Exams
	Windows program to control monochromator

ASSIGNMENT 1: Python Functions and Classes

Goals:

To learn the syntax of the Python language, and use Python to make some simple programs that can do useful work.

A.

Write a function that takes two inputs and adds them together, then returns the result. Then use your function and give it some inputs, and see what comes out. Try numbers, of course, but also try letters and ‘strings’ (words). Do this first from the “command line” in the idle environment. Once it works, try it in a separate file (called a module). When you make your module, use a “print” statement to print the results to the idle console.

Suppose your function was called “Adder” in your module. After you run it, the name will included in the namespace of the “idle” python interpreter. You can go to the command line, and execute the Adder(x,y) function from there.

If you want to find out what python “understands,” type “dir()” at the command prompt, and it will print a list of all of the functions and modules that it knows about.

B.

Open up a new file, and create the following class:

class auto:

 wheels=4.0

 def __init__(self, speed=1.0, color="black"):

 self.speed=speed

 self.color=color

“Run” this module, so that it loads in the interpreter. Go to the interpreter, and make sure that dir() shows that class “auto” has loaded.

Make some cars! Make a default Ford, which is “black” and has speed=1.0. Change the color of the Ford to “white.” Make a “Toyota”, which has speed=4.0, and is “red”. How many wheels do these cars have? Change the number of wheels of the Ford to “3”. How many wheels do the other cars have? Now, do the command “auto.wheels=8”. Make a Chevy and a Kia. How many wheels do the Chevy and Kia have? What is happening here?

C.

Write a function to plot the real and imaginary parts of the complex exponential function. Use the cmath module, and the UCF module with the plot routine (UCF_Tkplot.UCF_Tkplot1).

ASSIGNMENT 2: Data Acquisition through Serial Port; Data storage and Display

GOALS: To use an external data acquisition tool through the Serial Port. To record and store data in a file. To display data from a file.

You will use the “Metex” digital voltmeter (DVM). This has a serial port interface. Find the Serial Port script in the “UCF” directory. Use it to communicate with the DVM, and convert output from the DVM into a real number representing the temperature.

1. Write a subroutine or function to set up the Metex DVM for proper communication according to the Metex manual, and then read the temperature back as a string. Modify the function to return a real number representing the temperature.

2. Use the Python open() statements to create a file for storing a list of real numbers. Store your data, then read it back and print it at the console. Write a simple program to store some numbers in a file and then read them back and print them. Your program should take the name of the file for storage as an input.
3. Write a program to read the temperature from the Metex, and store the results in a file. Your program should accept the filename from the console.

4. Write a program that will take a filename as input, open it up, and plot the data on a graph using the UCF plotting routine.

ASSIGNMENT 3: DAQ OVER THE INTERNET – “WEB-Temp”

GOALS:

A. Learn to communicate with a remote process over the internet, and log data over time.

B. Learn to use a graphical user interface (GUI) to build a python application.

Task 1:

Create a python script that will act as a Web server to record the temperature of the thermocouple. We can put the thermocouple in a beaker of hot water, so the temperature will change over time.

Also, create a python script that will act as a Data Logging script, to access the Web server through telnet, request a temperature, and store the result in a file.

Task 2:

Create a Windows GUI application that has a text-box window, and a command button. When you push the command button, the text-box displays the current temperature from the Metex.

ASSIGNMENT 4: Instrument Control-Monochromator

GOALS:

A. Learn to communicate with MS Applications like Excel from within a Python program.

B.

To control an optical grating monochromator using software. The monochromator consists of a grating controlled by a stepper motor, plus entrance and exit slits and mirrors. A light source is available in the form of a laser diode. A photodiode detector can be read using a digital voltmeter (DVM). The system is provided with a stepper motor controller, which takes TTL inputs to control the number of steps, and the step direction.

You will output digital signals to the stepper motor controller through the Parallel Port (also called the printer port). This will move the grating. You will need to translate the number of steps into a useful variable in your program that can be understood by you, the monochromator operator. As the grating rotates, the amount of light reaching the photodiode changes. This results in a change in voltage output by the photodiode, which is read by the DVM.

The experiment then consists of a two channel I/O system. The stepper motor control is one channel (output), and the photodiode voltage is the second channel (input).

Installing Python and related modules

Octave and Gnuplot (optional)

Numeric, Matpy, and SciPy

win32all

wxPython

Documentation

Simple functions, variable scope, everything as an object

Classes and object oriented programming

Methods and properties

Inheritance, encapsulation, polymorphism

