Solution to the 3D S.H.O. in Spherical Coordinates
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Spring 2001

Our starting point is the separated S.E. in polar coordinates, with the proposed form of solution
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With these assumptions and substituting into the 3D S.E., we produce the radial wave equation
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This form is valid for any potential that is a function only of distance, r. Next we insert the specific form of the 3D SHO potential, and make a series of substitutions of variables, to simplify the form of the equation, 
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which produces the neater looking equation,
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Now, we look for clues as to the form of the solution to this expression. First of all, if we set l=0, we arrive at a form that we have seen before,
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which is the equation for the one-dimensional S.H.O. We know the solutions to this equation are products of a Gaussian exponential and a polynomial (Hermite polynomial). In one-dimension, the ground state solution to this is
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When we substitute this solution into the radial equation, we get the quantization condition that
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We know from our Cartesian analysis of the 3D SHO that this is the wrong answer! What went wrong? To see the problem, we recall that the correct wavefunction is R(r), not u(r), and the radial function R(r) diverges at the origin in the case of u00. This means that the first allowed function is u10, and this gives the correct ground state energy of 
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Next, we examine the behavior of the 3D SHO radial equation for the limiting values of small and large . Note that we do not have to do this, we could start in with substitution of a power series right away. However, it greatly simplifies our work, if we identify common “named” functions that have the correct asymptotic behavior.

At the small radius limit, we find,
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which has the exact solution
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when we satisfy the condition
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By looking at R(r) as “r” goes to zero, we see right away that the q=-l solution is not allowed, since it results in the wavefunction diverging at the origin.

Next, we look at the large radius behavior, where the differential equation looks like
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This has an approximate solution,
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If you don’t feel comfortable with this approximate solution, we could use the fact that the l=0 form of the solution has this Gaussian shape.

The next step is to propose the actual form of the solution to the full equation. We write it as the product of the small and large radius asymptotic functions, times a polynomial in . It looks like this,
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There are a few things to notice. We have pulled out the asymptotic behavior, in the prefactors, just to make the algebra of the next steps a little bit easier. Most important, is that the polynomial sum is a finite series, which terminates at some value of j=n-1. This is critical. If the series is infinite, the wavefunction will be unbounded, and therefore unphysical. Also, it turns out that it is precisely the step of terminating the series, that produces quantization of energy.

The next steps are not hard, but you have to be careful. First, notice that if we take n=1, we can check to see that we get the correct ground state. Our proposed radial function becomes,
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which is the correct form, as we found above. You can see now why I chose to have the series terminate at j=n-1. I could have used j=n, but that would have changed the labeling of the wavefunctions. Either way will work, you just have to be happy with the nomenclature in the end.

Now for the tedious part. Substitute the proposed radial function into the differential equation, and evaluate it term by term. First we take the second derivative:
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the other terms are 
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The term in j+l+3 cancels, and we are left with the following equation,
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which can be simplified to two series,
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This equation must be true for all , which means the the coefficients of each term in x must vanish. Let’s choose to satisfy this criterion for terms of order “m”. This is the only tricky part.
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so
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which can be more conveniently, and equivalently, written as
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This is the recursion relation for the coefficients of our wavefunction. The finish line is now in sight. Recall, that this series must terminate, or the wavefunction will diverge. This means that for some cj the next term must be zero. This happens for the combination of j and l that make the numerator of the recursion relation equal to zero. Set
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Now, we need to examine the impact of these results with some specific cases.

	n-1
	l
	j_max
	
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	Series doesn’t terminate
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This produces the ladder of eigenfunctions and eigenvalues shown below.

	Eigenvalue
	L=0
	L=1
	L=2
	L=3
	L=4

	3
	1S
	
	
	
	

	5
	
	2P
	
	
	

	7
	3S
	
	3D
	
	

	9
	
	4P
	
	4F
	

	11
	5S
	
	5D
	
	5G

	Etc.
	
	
	
	
	


_1045632441.unknown

_1045638794.unknown

_1045640455.unknown

_1045640755.unknown

_1045641955.unknown

_1045642796.unknown

_1045642814.unknown

_1045642685.unknown

_1045641922.unknown

_1045640624.unknown

_1045639842.unknown

_1045640060.unknown

_1045639085.unknown

_1045633030.unknown

_1045635314.unknown

_1045635464.unknown

_1045634776.unknown

_1045632815.unknown

_1045632893.unknown

_1045632679.unknown

_1045631220.unknown

_1045631784.unknown

_1045631904.unknown

_1045631395.unknown

_1045630715.unknown

_1045631199.unknown

_1045630297.unknown

