1. In class, we discussed the diffusion equation and also a bit about Boltzmann statistics. In this problem, we will explore diffusion in the presence of an external field.

We saw in class that the mass current J_z of diffusing particles is given in terms of the diffusion constant D and local density $n(z,t)$ as

$$J_z = -D \frac{\partial n}{\partial z}$$

(in one dimension). Consider now an external field acting so that the diffusing particles feel an external force with z-component $F_z = -\frac{dU}{dz}$, where $U(z)$ is the potential energy of a particle at z. If the force $F_z = F_0$ (i.e. a constant force independent of z), then the potential energy is (up to a constant) $U(z) = -F_0 z$.

With this added force, the mass current is taken to be

$$J_z = -D \frac{\partial u}{\partial z} + n \mu F_0$$

where μ is the mobility.

a) Consider the case where $J_z = 0$ (i.e. equilibrium). Recall first that in equilibrium, based on our discussion of Boltzmann statistics, that at temperature T we have $n(z) = n_0 e^{-U(z)/k_B T}$. Next, show that there is a relationship between μ and D,

$$\mu = \frac{D}{k_B T}$$

b) Use the continuity equation $\frac{\partial n}{\partial t} + \frac{\partial J_z}{\partial z} = 0$ to obtain the one-dimensional Smoluchowski equation,

$$\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial z^2} - \frac{DF_0}{k_B T} \frac{\partial n}{\partial z}$$

which can be used to model the response of a fluid to external fields including the approach to equilibrium.

2. Write a code to perform a random walk in three dimensions. Run the code for many iterations, corresponding to a large ensemble of trajectories. Determine in both
cases $\langle r^2 \rangle$ as a function of time. Make a log-log plot of your results, and determine from a linear fit to the data, as described in class, the exponents ν. Verify that for $\langle r^2 \rangle \sim t^{2\nu}$ you obtain $\nu = 1/2$ for your random walk.

3. The Hamiltonian H_Ω for a two-dimensional spin system is given by

$$H_\Omega = -\frac{1}{2}J \sum_{i=1}^{N} \sum_{j=1}^{N} S_{ij} \left(S_{i+1,j} + S_{i-1,j} + S_{i,j+1} + S_{i,j-1} \right)$$ \hspace{1cm} (1)

We can also consider adding an applied external field H which adds a term to the Hamiltonian $-H \sum_{j=1}^{N} S_j$. A more shorthand way to write this is

$$H_\Omega = -J \sum_{(ij)} S_i S_j - H \sum_{i} S_i$$ \hspace{1cm} (2)

where the summation is over nearest neighbor spins and H is an externally applied field.

Show that the heat capacity, $C = \frac{\partial (H_\text{meta})}{\partial T}$ can be found from the fluctuations in equilibrium,

$$C = \frac{1}{k_B T^2} \left[\langle H_\text{meta}^2 \rangle - \langle H_\text{meta} \rangle^2 \right]$$

and also show that the susceptibility $\chi = \frac{\partial M}{\partial H}$ can be found from the equilibrium fluctuations in the magnetization M,

$$\chi = \frac{1}{k_B T} \left[\langle M^2 \rangle - \langle M \rangle^2 \right]$$

4. Write a code to explore the thermodynamics of the Ising model on a square lattice in two dimensions using Metropolis Monte Carlo. Use periodic boundary conditions so that spins on the edge of your square interact with spins on the opposite edge. Write a subroutine “cluster” to compute the local energy of spin at site i,j with its nearest neighbors. Now here is the Monte-Carlo algorithm which samples random states with probability in accord with the partition function:

0. Begin with a random array of spins.
1. Compute the energy E_1 of the current spin state.
2. Choose a spin on the lattice at random and flip its spin state.
3. Recompute the energy E_2 of the new spin state.
4. Determine the energy difference $\Delta = E_1 - E_2$.

5. If $\Delta \leq 0$, accept the current step in the ensemble. Save the current spins and energy and return to 1.

6. If $\Delta > 0$, draw a random number between 0 and 1.

7. If the random number is less than $\exp\left(-\frac{\Delta}{k_BT}\right)$, accept the current step into the ensemble and save the current spins and energy. Return to 1.

8. If the random number is greater than or equal to $\exp\left(-\frac{\Delta}{k_BT}\right)$, then reject the current step. Reset the spins to what they were before the spin was flipped in step 2. Return to step 1.

Evolve a lattice of 100×100 spins. The exact result for the transition temperature found by Onsager is $k_BT_c = \frac{2J}{\log(1+\sqrt{2})} \approx 2.2692J$. To determine the transition temperature and other quantities, write your code in terms of the dimensionless parameter $K = \frac{J}{k_BT}$, and explore the region from $K = 0.3$ to $K = 0.5$. Perform your simulation at 50 uniformly distributed values of K in this range. Each time you change the coupling constant K, retain the spins from previous value of K. This provides a good guess for the spin configuration.

Make a plot of energy vs. Monte-Carlo iteration. You will find that the system will equilibrate after a certain amount of time. This will give you an idea of how much time is required to equilibrate to each new value of K. After the system is equilibrated, accumulate statistics for the magnetization M and also the fluctuations required to compute the heat capacity and susceptibility. Create plots of the magnetization M, heat capacity C, and susceptibility χ as a function of $\frac{1}{K}$. The transition should be quite close to the Onsager result $1/K = 2.2692$.

A good reference for this problem is "Lectures on Phase Transitions and the Renormalization Group" by Nigel Goldenfeld.