Homework 6
PHZ 5156
Due Thursday, October 15

1. Consider the time-independent Schrödinger equation,

\[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \phi(x) = E \phi(x) \]

where \(V(x) \) is a periodic potential with periodicity \(L \) such that \(V(x + NL) = V(x) \) where \(N \) is any integer.

Bloch’s theorem shows that the eigenstates of the above equation can be written as,

\[\phi_{\lambda k}(x) = \frac{1}{\sqrt{L}} \sum_G c_{\lambda k, G} \exp \left[i (k + G) x \right] \]

where \(G \) are the (one-dimensional in this case) reciprocal lattice vectors given by \(G_n = \frac{2\pi n}{L} \), where \(n \) is an integer.

a) Show that the eigenvalue problem can then be written as,

\[\sum_{G'} H_{G, G'} c_{\lambda k, G'} = E_{\lambda k} c_{\lambda k, G} \]

and determined an expression for the elements of the matrix \(H_{G, G'} \). Convince yourself that this suggests the need to compute the Fourier transform of \(V(x) \) as,

\[V_{G, G'} = \frac{1}{L} \int_0^L V(x) \exp \left[i (G' - G) x \right] dx \]

Also, you should find that the diagonal elements of the matrix depend on \(k \), whereas the off-diagonal elements do not.

b) Write a code to compute \(E_{\lambda k} \) as a function of \(k \), using the potential \(V(x) \) defined on \(0 < x < L \) as

Use the subroutines four1.f90 and ch.f to compute the Fourier transform and diagonalize the complex Hermitian matrix \(H \) with elements \(H_{G, G'} \). For the potential \(V(x) \), use the Gaussian

\[V(x) = V_0 \exp \left[\frac{(x - L/2)^2}{2\sigma^2} \right] \]
Plot a figure which includes only the four lowest eigenvalues for each \(k \) plotted as a function of \(k \). Convince yourself that your figure need only include \(-\pi/\ell < k < \pi/\ell\). Plot data for about 40 uniformly-spaced \(k \) values along this interval. As usual, take \(h = m = 1 \). Also, take \(L = 4 \), \(\sigma = 4 \), and \(V_0 = -10 \). Decide on a suitable discretization \(\Delta x \) for the Fourier transform. Note that as \(\Delta x \) becomes smaller, the computational load goes up very fast. You should choose \(\Delta x < \sigma \), but not dramatically smaller. But remember, for the FFT, the number of discrete points must be an integer power of 2! I chose \(N=64 \), which gives \(\Delta x = 4/64 = 1/16 \). You might get additional insight from an analytical calculation of \(V_{G,G'} \) by taking the integration limits to infinity. In practice, it would be important to test the sensitivity of the results to the chosen value of \(\Delta x \).

For extra credit, plot the probability density for the lowest 5 states at \(k = 0 \).