Quiz 3
PHY 4605

Friday, January 27

Each problem is worth 10 points

1. A hydrogen atom is in a state given by the real-space wave function,

\[\psi(r, \theta, \phi) = \frac{1}{\sqrt{3}} \varphi_{100} - \frac{1}{\sqrt{3}} \varphi_{210} - i \frac{1}{\sqrt{3}} \varphi_{300} \]

where

\[\hat{H} \varphi_{nlm} = E_n \varphi_{nlm} \]

and \(E_n \) the energy eigenvalues of a hydrogenic atom with \(Z = 1 \) (i.e. hydrogen).

Determine the following.

a. What is the energy expectation value \(\langle E \rangle \) in eV?

b. What is the expectation value \(\langle L^2 \rangle \)?

2. At \(t=0 \) the angular momentum is measured to be \(L^2 = 2\hbar^2 \).

a. After this measurement, determine the time-dependent wavefunction \(\psi(r, \theta, \phi, t) \).
You do not need to write out all of the \(r, \theta, \) and \(\phi \) dependence, but clearly show the time-dependence.

b. What is the energy expectation value in this new state in eV?