Physics for Scientists and Engineers I

PHY 2048, Section 4

Dr. Beatriz Roldán Cuenya

University of Central Florida, Physics Department, Orlando, FL

Chapter 1 - Introduction

I. General
II. International System of Units
III. Conversion of units
IV. Dimensional Analysis
V. Problem Solving Strategies

I. Objectives of Physics

- Find the limited number of fundamental laws that govern natural phenomena.
- Use these laws to develop theories that can predict the results of future experiments.
-Express the laws in the language of mathematics.
- Physics is divided into six major areas:

1. Classical Mechanics
2. Relativity
3. Thermodynamics
4. Electromagnetism (PHY2049)
5. Optics (PHY2049)
6. Quantum Mechanics

II. International System of Units

QUANTITY	UNIT NAME	UNIT SYMBOL
Length	meter	m
Time	second	s
Mass	kilogram	kg
Speed		m / s
Acceleration		$\mathrm{m} / \mathrm{s}^{2}$
Force	Newton	N
Pressure	Pascal	$\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}$
Energy	Joule	$\mathrm{J}=\mathrm{Nm}$
Power	Watt	$\mathrm{W}=\mathrm{J} / \mathrm{s}$
Temperature	Kelvin	K

POWER	PREFIX	ABBREVIATION
10^{15}	peta	P
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10^{1}	deka	D
10^{-1}	deci	c
10^{-2}	centi	μ
10^{-3}	milli	n
10^{-6}	micro	p
10^{-9}	nano	f
10^{-12}	pico	femto
10^{-15}		

III. Conversion of units

Chain-link conversion method: The original data are multiplied successively by conversion factors written as unity. Units can be treated like algebraic quantities that can cancel each other out.

Example: $316 \mathrm{feet} / \mathrm{h} \rightarrow \mathrm{m} / \mathrm{s}$

$$
\left(316 \frac{\text { feet }}{h t}\right) \cdot\left(\frac{1 h}{3600 \mathrm{~s}}\right) \cdot\left(\frac{1 \mathrm{~m}}{3.281 \mathrm{feet}}\right)=0.027 \mathrm{~m} / \mathrm{s}
$$

IV. Dimensional Analysis

Dimension of a quantity: indicates the type of quantity it is; length [L], mass [M], time [T]

Dimensional consistency: both sides of the equation must have the same dimensions.

Example: $\mathrm{x}=\mathrm{x}_{0}+\mathrm{v}_{0} \mathrm{t}+\mathrm{at}^{2} / 2$

$$
[L]=[L]+\frac{[L]}{[\not Z]}\left[T^{\prime}\right]+\frac{[L]}{\left[\mathbb{P}^{2}\right]}\left[\mathbb{T}^{2}\right]=[L]+[L]+[L]
$$

Note: There are no dimensions for the constant (1/2)

Table 1.6

Units of Area, Volume, Velocity, Speed, and Acceleration

System	Area $\left(\mathbf{L}^{2}\right)$	Volume $\left(\mathbf{L}^{3}\right)$	Speed $(\mathbf{L} / \mathbf{T})$	Acceleration $\left(\mathbf{L} / \mathbf{T}^{2}\right)$
SI	m^{2}	$\mathrm{~m}^{3}$	$\mathrm{~m} / \mathrm{s}$	$\mathrm{m} / \mathrm{s}^{2}$
U.S. customary	ft^{2}	ft^{3}	ft / s	$\mathrm{ft} / \mathrm{s}^{2}$

Significant figure \rightarrow one that is reliably known.
Zeros may or may not be significant:

- Those used to position the decimal point are not significant.
- To remove ambiguity, use scientific notation.

Ex: $\quad 2.56 \mathrm{~m} / \mathrm{s}$ has 3 significant figures, 2 decimal places. $0.000256 \mathrm{~m} / \mathrm{s}$ has 3 significant figures and 6 decimal places. 10.0 m has 3 significant figures.

1500 m is ambiguous $\rightarrow 1.5 \times 10^{3}$ (2 figures), 1.50×10^{3} (3 fig.)
Order of magnitude \rightarrow the power of 10 that applies.

V. Problem solving tactics

- Explain the problem with your own words.
- Make a good picture describing the problem.
- Write down the given data with their units. Convert all data into S.I. system.
- Identify the unknowns.
- Find the connections between the unknowns and the data.
- Write the physical equations that can be applied to the problem.
- Solve those equations.
- Always include units for every quantity. Carry the units through the entire calculation.
- Check if the values obtained are reasonable \rightarrow order of magnitude and units.

MECHANICS \rightarrow Kinematics

Chapter 2 - Motion along a straight line

I. Position and displacement
II. Velocity
III. Acceleration
IV. Motion in one dimension with constant acceleration
V. Free fall

Particle: point-like object that has a mass but infinitesimal size.

I. Position and displacement

Position: Defined in terms of a frame of reference: x or y axis in 1D.

- The object's position is its location with respect to the frame of reference.

Position-Time graph: shows the motion of the particle (car).

The smooth curve is a guess as to what happened between the data points.

I. Position and displacement

Displacement: Change from position x_{1} to $x_{2} \rightarrow$
$\Delta \mathrm{x}=\mathrm{x}_{2}-\mathrm{x}_{1}$ during a time interval.

- Vector quantity: Magnitude (absolute value) and direction (sign).
- Coordinate (position) \neq Displacement $\rightarrow x \neq \Delta x$

$\Delta x>0$

$\Delta x=0$

Coordinate system

Only the initial and final coordinates influence the displacement \rightarrow many different motions between x_{1} and x_{2} give the same displacement.

Distance: length of a path followed by a particle.

- Scalar quantity

Displacement $=$ Distance
Example: round trip house-work-house \rightarrow distance traveled $=10 \mathrm{~km}$ displacement = 0

Review:

- Vector quantities need both magnitude (size or numerical value) and direction to completely describe them.
- We will use + and - signs to indicate vector directions.
- Scalar quantities are completely described by magnitude only.

II. Velocity

Average velocity: Ratio of the displacement Δx that occurs during a particular time interval Δt to that interval.

$$
\begin{equation*}
\mathrm{v}_{\text {avg }}=\frac{\Delta \mathrm{x}}{\Delta \mathrm{t}}=\frac{\mathrm{x}_{2}-\mathrm{x}_{1}}{\mathrm{t}_{2}-\mathrm{t}_{1}} \tag{2.2}
\end{equation*}
$$

-Vector quantity \rightarrow indicates not just how fast an object is moving but also in which direction it is moving.

- SI Units: m/s
- Dimensions: Length/Time [L]/[T]

Motion along x-axis

- The slope of a straight line connecting 2 points on an x-versus-t plot is equal to the average velocity during that time interval.

Average speed: Total distance covered in a time interval.

$$
\begin{equation*}
\mathrm{S}_{\mathrm{avg}}=\frac{\text { Total distance }}{\Delta \mathrm{t}} \tag{2.3}
\end{equation*}
$$

$\mathrm{S}_{\mathrm{avg}} \neq$ magnitude $\mathrm{V}_{\text {avg }}$
$\mathrm{S}_{\text {avg }}$ always >0

Scalar quantity

Same units as velocity
Example: A person drives 4 mi at $30 \mathrm{mi} / \mathrm{h}$ and 4 mi and $50 \mathrm{mi} / \mathrm{h} \rightarrow$ Is the average speed $>,<,=40 \mathrm{mi} / \mathrm{h}$?
$<40 \mathrm{mi} / \mathrm{h}$
$\mathrm{t}_{1}=4 \mathrm{mi} /(30 \mathrm{mi} / \mathrm{h})=0.13 \mathrm{~h} \quad ; \mathrm{t}_{2}=4 \mathrm{mi} /(50 \mathrm{mi} / \mathrm{h})=0.08 \mathrm{~h} \rightarrow \mathrm{t}_{\mathrm{tot}}=0.213 \mathrm{~h}$
$\rightarrow \mathrm{S}_{\mathrm{avg}}=8 \mathrm{mi} / 0.213 \mathrm{~h}=37.5 \mathrm{mi} / \mathrm{h}$

Instantaneous velocity: How fast a particle is moving at a given instant.

$$
\begin{equation*}
v_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t} \tag{2.4}
\end{equation*}
$$

- The limit of the average velocity as the time interval becomes infinitesimally short, or as the time interval approaches zero.
- The instantaneous velocity indicates what is happening at every point of time.
- Can be positive, negative, or zero.
- The instantaneous velocity is the slope of the line tangent to the x vs. t curve (green line).

Instantaneous velocity:

When the velocity is constant, the average velocity over any time interval is equal to the instantaneous velocity at any time.

Instantaneous speed: Magnitude of the instantaneous velocity.
Example: car speedometer.

- Scalar quantity

Average velocity (or average acceleration) always refers to an specific time interval.

Instantaneous velocity (acceleration) refers to an specific instant of time.

III. Acceleration

Average acceleration: Ratio of a change in velocity Δv to the time interval Δt in which the change occurs.

$$
\begin{equation*}
a_{a v g}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{\Delta v}{\Delta t} \tag{2.5}
\end{equation*}
$$

- Vector quantity
- Dimensions [L]/[T]², Units: m/s²
- The average acceleration in a "v-t" plot is the slope of a straight line connecting points corresponding to two different times.

Instantaneous acceleration: Limit of the average acceleration as Δt approaches zero.

- Vector quantity

$$
\begin{equation*}
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}} \tag{2.6}
\end{equation*}
$$

- The instantaneous acceleration is the slope of the tangent line (v-t plot) at a particular time. (green line in B)
- Average acceleration: blue line.
- When an object's velocity and acceleration are in the same direction (same sign), the object is speeding up.
- When an object's velocity and acceleration are in the opposite direction, the object is slowing down.

- Positive acceleration does not necessarily imply speeding up, and negative acceleration slowing down.

Example (1): $v_{1}=-25 \mathrm{~m} / \mathrm{s} ; \mathrm{v}_{2}=0 \mathrm{~m} / \mathrm{s}$ in $5 \mathrm{~s} \rightarrow$ particle slows down, $\mathrm{a}_{\mathrm{avg}}=5 \mathrm{~m} / \mathrm{s}^{2}$

- An object can have simultaneously $v=0$ and $a \neq 0$

Example (2): $x(t)=A t^{2} \rightarrow v(t)=2 A t \rightarrow a(t)=2 A ; A t t=0 s, v(0)=0$ but $a(0)=2 A$
Example (3):

- The car is moving with constant positive velocity (red arrows maintaining same size) \rightarrow Acceleration equals zero.

Example (4):

+ acceleration
+ velocity

- Velocity and acceleration are in the same direction, "a" is uniform (blue arrows of same length) \rightarrow Velocity is increasing (red arrows are getting longer).

Example (5):

- acceleration
+ velocity

- Acceleration and velocity are in opposite directions.
- Acceleration is uniform (blue arrows same length).
- Velocity is decreasing (red arrows are getting shorter).

IV. Motion in one dimension with constant acceleration

- Average acceleration and instantaneous acceleration are equal.

$$
a=a_{a v g}=\frac{v-v_{0}}{t-0}
$$

- Equations for motion with constant acceleration:
$v=v_{0}+a t$
$\nu_{\text {avg }}=\frac{x-x_{0}}{t} \rightarrow x=x_{0}+v_{\text {avg }} t$
$v_{\text {avg }}=\frac{v_{0}+v}{2}+(2.7) \rightarrow v_{\text {avg }}=v_{0}+\frac{a t}{2}$
$(2.8)+(2.9) \rightarrow x-x_{0}=v_{0} t+\frac{a t^{2}}{2}$
$(2.7)+(2.10) \rightarrow v^{2}=v_{0}^{2}+a^{2} t^{2}+2 a\left(v_{0} t\right)=v_{0}^{2}+a^{2} t^{2}+2 a\left(x-x_{0}-\frac{a t^{2}}{2}\right)$
$\rightarrow v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$ t missing (2.11)
$(2.7)+(2.10) \rightarrow x-x_{0}=v_{0} t+\frac{t^{2}}{2}\left(\frac{v-v_{0}}{t}\right)=\frac{\left(v+v_{0}\right) t}{2}$
$(2.7)+(2.10) \rightarrow x-x_{0}=(v-a t)+\frac{a t^{2}}{2}=v-\frac{1}{2} a t^{2}$

(a)

(b)

PROBLEMS - Chapter 2

P1. A red car and a green car move toward each other in adjacent lanes and parallel to The x-axis. At time $t=0$, the red car is at $x=0$ and the green car at $x=220 \mathrm{~m}$. If the red car has a constant velocity of $20 \mathrm{~km} / \mathrm{h}$, the cars pass each other at $\mathrm{x}=44.5 \mathrm{~m}$, and if it has a constant velocity of $40 \mathrm{~km} / \mathrm{h}$, they pass each other at $x=76.6 \mathrm{~m}$. What are (a) the initial velocity, and (b) the acceleration of the green car?

$$
\begin{aligned}
& x_{r_{1}}=v_{r_{1}} t_{1} \rightarrow t_{1}=\frac{44.5 \mathrm{~m}}{5.55 \mathrm{~m} / \mathrm{s}}=8 \mathrm{~s} \\
& x_{r_{2}}=v_{r_{2}{ }_{2}} \rightarrow t_{2}=\frac{76.6 \mathrm{~m}}{11.11 \mathrm{~m} / \mathrm{s}}=6.9 \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
& x_{r_{2}}-x_{g}=\boxminus v_{g 0} t_{2} \boxminus 0.5 \cdot a_{g} t_{2}^{2} \rightarrow 76.6-220=-v_{g 0} \cdot(6.9 \mathrm{~s})-0.5 \cdot(6.9 \mathrm{~s})^{2} a_{g} \\
& x_{r 1}-x_{g}=\boxminus v_{g 0} t_{1} \boxminus 0.5 \cdot a_{g} t_{1}^{2} \rightarrow 44.5-220=-v_{g 0} \cdot(8 \mathrm{~s})-0.5 \cdot(8 \mathrm{~s})^{2} a_{g}
\end{aligned}
$$

The car moves to the left (-) in my reference system $\rightarrow \mathrm{a}<0, \mathrm{v}<0$

$$
\begin{gathered}
a_{g}=2.1 \mathrm{~m} / \mathrm{s}^{2} \\
\mathrm{v}_{0 \mathrm{~g}}=13.55 \mathrm{~m} / \mathrm{sc}
\end{gathered}
$$

P2: At the instant the traffic light turns green, an automobile starts with a constant acceleration a of $2.2 \mathrm{~m} / \mathrm{s}^{2}$. At the same instant, a truck, traveling with constant speed of $9.5 \mathrm{~m} / \mathrm{s}$, overtakes and passes the automobile. (a) How far beyond the traffic signal will the automobile overtake the truck? (b) How fast will the automobile be traveling at that instant?
$v_{t}=9.5 \mathrm{~m} / \mathrm{s}$
$x_{T}=d=v_{T} t=9.5 t \rightarrow \quad$ (1) Truck
(a) $9.5 \cdot t=1.1 \cdot t^{2} \rightarrow t=8.63 \mathrm{~s} \rightarrow d=(9.5 \mathrm{~m} / \mathrm{s})(8.63 \mathrm{~s}) \approx 82 \mathrm{~m}$
$x_{C}=d=v_{C 0} t+\frac{1}{2} a_{c} t^{2} \rightarrow d=0+0.5 \cdot\left(2.2 \mathrm{~m} / \mathrm{s}^{2}\right) \cdot t^{2}=1.1 t^{2}$
(2) Car
(b) $v_{f}^{2}=v_{0}^{2}+2 \cdot a_{c} \cdot d=2 \cdot\left(2.2 \mathrm{~m} / \mathrm{s}^{2}\right) \cdot(82 \mathrm{~m}) \rightarrow v_{f}=19 \mathrm{~m} / \mathrm{s}$

P3: A proton moves along the x-axis according to the equation: $x=50 t+10 t^{2}$, where x is in meters and t is in seconds. Calculate (a) the average velocity of the proton during the first 3 s of its motion.

$$
v_{\mathrm{avg}}=\frac{x(3)-x(0)}{\Delta t}=\frac{(50)(3)+(10)(3)^{2}-0}{3}=80 \mathrm{~m} / \mathrm{s} .
$$

(b) Instantaneous velocity of the proton at $\mathrm{t}=3 \mathrm{~s}$.

$$
v(t)=\frac{d x}{d t}=50+20 t \rightarrow v(3 \mathrm{~s})=50+20 \cdot 3=110 \mathrm{~m} / \mathrm{s}
$$

(c) Instantaneous acceleration of the proton at $t=3 \mathrm{~s}$.

$$
a(t)=\frac{d v}{d t}=20 \mathrm{~m} / \mathrm{s}^{2}=a(3 \mathrm{~s})
$$

(d) Graph x versus t and indicate how the answer to (a) (average velocity) can be obtained from the plot.

(e) Indicate the answer to (b) (instantaneous velocity) on the graph.
(f) Plot v versus t and indicate on it the answer to (c).
$x=50 t+10 t^{2}$

P4. An electron moving along the x-axis has a position given by: $x=16 t \cdot \exp (-t) m$, where t is in seconds. How far is the electron from the origin when it momentarily stops?
$x(t)$ when $v(t)=0$??

$$
\frac{d x}{d t}=v=16 e^{-t}-16 t e^{-t}=16 e^{-t}(1-t) \quad \square v=0 \rightarrow(1-t)=0 ; \quad\left(e^{-t}>0\right) \rightarrow t=1 s \quad x(1)=16 / e=5.9 \mathrm{~m}
$$

P5. When a high speed passenger train traveling at $161 \mathrm{~km} / \mathrm{h}$ rounds a bend, the engineer is shocked to see that a locomotive has improperly entered into the track from a siding and is a distance $D=676 \mathrm{~m}$ ahead. The locomotive is moving at $29 \mathrm{~km} / \mathrm{h}$. The engineer of the high speed train immediately applies the brakes. (a) What must be the magnitude of the resultant deceleration if a collision is to be avoided? (b) Assume that the engineer is at $x=0$ when at $\mathrm{t}=0$ he first spots the locomotive. Sketch $\mathrm{x}(\mathrm{t})$ curves representing the locomotive and high speed train for the situation in which a collision is just avoided and is not quite avoided.

$\mathrm{V}_{\mathrm{T}}=161 \mathrm{~km} / \mathrm{h}=44.72 \mathrm{~m} / \mathrm{s}=\mathrm{V}_{\mathrm{T} 0} \rightarrow 1 \mathrm{D}$ movement with $\mathrm{a}<0=$ cte
$\mathrm{v}_{\mathrm{L}}=29 \mathrm{~km} / \mathrm{h}=8.05 \mathrm{~m} / \mathrm{s}$ is constant

$$
\begin{aligned}
& d_{L}=v_{L} t=8.05 \quad t \rightarrow t=\frac{d_{L}}{8.05} \quad \text { (1) } \quad \text { Locomotive } \\
& d_{L}+D=v_{T 0} t+\frac{1}{2} a_{T} t^{2} \rightarrow d_{L}+676=44.72 \quad t+\frac{1}{2} a_{T} t^{2} \quad \text { (2) Train }
\end{aligned}
$$

$$
\begin{align*}
& v_{T f}=v_{T 0}+a_{T} t=0 \rightarrow a_{T}=\frac{-44.72 \mathrm{~m} / \mathrm{s}}{t}=(\text { eq. } 1)=\frac{(-44.72 \mathrm{~m} / \mathrm{s})(8.05 \mathrm{~m} / \mathrm{s})}{d_{L}}=\frac{-360 \mathrm{~m}^{2} / \mathrm{s}^{2}}{d_{L}} \tag{3}\\
& v^{2}{ }_{T f}=v^{2}{ }_{T 0}+2 a_{T}\left(D+d_{L}\right)=0 \rightarrow a_{T}=\frac{-(44.72 \mathrm{~m} / \mathrm{s})^{2}}{2\left(676 \mathrm{~m}+d_{L}\right)} \tag{4}\\
& \text { (3) }=(4) \rightarrow d_{L}=380.3 \mathrm{~m}
\end{align*}
$$

from $(1) \rightarrow t=\frac{d_{L}}{8.05}=47.24 \mathrm{~s}$

$$
\text { (1) }+(3) \rightarrow a_{T}=\frac{-360 \mathrm{~m}^{2} / \mathrm{s}^{2}}{380.3 \mathrm{~m}}=-0.947 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& x_{L}=676+8.05 t \\
& x_{T}=44.72 t+0.5 a_{T} t^{2}
\end{aligned}
$$

- Collision can be avoided:

Slope of $x(t)$ vs. t locomotive at $t=47.24 \mathrm{~s}$ (the point were both Lines meet) $=v$ instantaneous locom > Slope of $x(t)$ vs. t train

- Collision cannot be avoided:

Slope of $x(t)$ vs. t locomotive at $t=47.24 \mathrm{~s}<$ Slope of $x(t)$ vs. t train

- The motion equations can also be obtained by indefinite integration:

$d v=a d t \rightarrow \int d v=\int a d t \rightarrow v=a t+C ; \quad v=v_{0} \quad$ at $t=0 \rightarrow v_{0}=(a)(0)+C \rightarrow v_{0}=C \rightarrow v=v_{0}+a t$
$d x=v d t \rightarrow \int d x=\int v d t \rightarrow \int d x=\int\left(v_{0}+a t\right) d t \rightarrow \int d x=v_{0} \int d t+a \int t d t \rightarrow x=v_{0} t+\frac{1}{2} a t^{2}+C^{\prime} ;$
$x=x_{0} \quad$ at $\quad t=0 \rightarrow x_{0}=v_{0}(0)+\frac{1}{2} a(0)+C^{\prime} \rightarrow x_{0}=C^{\prime} \rightarrow x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$

V. Free fall

Motion direction along y-axis ($y>0$ upwards)

Free fall acceleration: (near Earth's surface) $a=-\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (in cte acceleration mov. eqs.)

Due to gravity \rightarrow downward on y , directed toward Earth's center

Approximations:

- Locally, Earth's surface essentially flat \rightarrow free fall "a" has same direction at slightly different points.
- All objects at the same place have same free fall "a" (neglecting air influence).
VI. Graphical integration in motion analysis

From a(t) versus t graph \rightarrow integration $=$ area between acceleration curve and time axis, from t_{0} to $\mathrm{t}_{1} \rightarrow \mathrm{v}(\mathrm{t})$

$$
v_{1}-v_{0}=\int_{t_{0}}^{t_{1}} a \cdot d t
$$

Similarly, from $v(t)$ versus t graph \rightarrow integration $=$ area under curve from t_{0} to $t_{1} \rightarrow x(t)$

$$
x_{1}-x_{0}=\int_{t_{0}}^{t_{1}} v \cdot d t
$$

P6: A rocket is launched vertically from the ground with an initial velocity of $80 \mathrm{~m} / \mathrm{s}$. It ascends with a constant acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$ to an altitude of 10 km . Its motors then fail, and the rocket continues upward as a free fall particle and then falls back down.
(a) What is the total time elapsed from takeoff until the rocket strikes the ground?
(b) What is the maximum altitude reached?
(c) What is the velocity just before hitting ground?

$$
\begin{aligned}
& y_{1}-y_{0}=v_{0} t_{1}+0.5 \cdot a_{0} t_{1}^{2} \rightarrow 10^{4}=80 t_{1}+2 t_{1}^{2} \rightarrow t_{1}=53.48 \mathrm{~s} \\
& a_{0}=\frac{v_{1}-v_{0}}{t_{1}} \rightarrow v_{1}=\left(4 \mathrm{~m} / \mathrm{s}^{2}\right) \cdot(53.48 \mathrm{~s})+80 \mathrm{~m} / \mathrm{s}=294 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
a_{1}=-g=\frac{0-v_{1}}{t_{2}} \rightarrow t_{2}=\frac{-294 \mathrm{~m} / \mathrm{s}}{-9.8 \mathrm{~m} / \mathrm{s}^{2}}=29.96 \mathrm{~s}
$$

Total time ascent $=\mathrm{t}_{1}+\mathrm{t}_{2}=53.48 \mathrm{~s}+29.96 \mathrm{~s}=83.44 \mathrm{~s}$

$$
0-y_{1}=-v_{1} t_{4}+0.5 \cdot a_{0} t_{4}^{2} \rightarrow-10^{4}=-294 t_{4}-4.9 t_{4}^{2}-t_{4}=24.22 s
$$

$$
\mathrm{t}_{\text {totala }}=\mathrm{t}_{1}+2 \mathrm{t}_{2}+\mathrm{t}_{4}=53.48 \mathrm{~s}+2.29 .96 \mathrm{~s}+24.22 \mathrm{~s}=137.62 \mathrm{~s}
$$

$$
\mathrm{h}_{\max }=\mathrm{y}_{2} \rightarrow \mathrm{y}_{2}-10^{4} \mathrm{~m}=\mathrm{v}_{1} \mathrm{t}_{2}-4.9 \mathrm{t}_{2}{ }^{2}=(294 \mathrm{~m} / \mathrm{s})(29.96 \mathrm{~s})-\left(4.9 \mathrm{~m} / \mathrm{s}^{2}\right)(29.96 \mathrm{~s})^{2}=4410 \mathrm{~m} \rightarrow \mathrm{~h}_{\max }=14.4 \mathrm{~km}
$$

$$
a_{2}=-g=\frac{v_{3}-\left(-v_{1}\right)}{t_{4}} \rightarrow v_{3}=-g \cdot t_{4}-v_{1}=-531.35 \mathrm{~m} / \mathrm{s}
$$

