Chapter 6 - Force and Motion II

I. Drag forces and terminal speed.
II. Uniform circular motion.
III. Non-Uniform circular motion.

I. Drag force and terminal speed

-Fluid: anything that can flow. Example: gas, liquid.
-Drag force: \vec{D}

- Appears when there is a relative velocity between a fluid and a body.
- Opposes the relative motion of a body in a fluid.
- Points in the direction in which the fluid flows.

Assumptions:

* Fluid = air.
* Body is blunt (baseball).
* Fast relative motion \rightarrow turbulent air.

$$
\begin{equation*}
D=\frac{1}{2} C \rho A v^{2} \tag{6.3}
\end{equation*}
$$

$\mathrm{C}=\mathrm{drag}$ coefficient (0.4-1).
$\rho=$ air density (mass/volume).

$A=$ effective body's cross sectional area \rightarrow area perpendicular to \vec{v}
-Terminal speed: \mathbf{v}_{t}

- Reached when the acceleration of an object that experiences a vertical movement through the air becomes zero $\rightarrow \mathrm{F}_{\mathrm{g}}=\mathrm{D}$

$$
\begin{equation*}
D-F_{g}=m a \rightarrow \text { if } a=0 \rightarrow \frac{1}{2} C \rho A v^{2}-F_{g}=0 \quad v_{t}=\sqrt{\frac{2 F_{g}}{C \rho A}} \tag{6.4}
\end{equation*}
$$

II. Uniform circular motion

-Centripetal acceleration:

$$
\begin{equation*}
a=\frac{v^{2}}{r} \tag{6.5}
\end{equation*}
$$

$\mathrm{v}, \mathrm{a}=\mathrm{ctes}, \mathrm{but}$ direction changes during motion.

A centripetal force accelerates a body by changing the direction of the body's velocity without changing its speed.
-Centripetal force: $\quad F=m \frac{v^{2}}{R}$
$\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{F}}$ are directed toward the center of curvature of the particle's path.

III. Non-Uniform circular motion

- A particle moves with varying speed in a circular path.
- The acceleration has two components: - Radial $\rightarrow \mathrm{a}_{\mathrm{r}}=\mathrm{v}^{2} / \mathrm{R}$

$$
\text { - Tangential } \rightarrow a_{t}=d v / d t
$$

a_{t} causes the change in the speed of the particle.

$$
\vec{a}=\vec{a}_{t}+\vec{a}_{r}=\frac{d|\vec{v}|}{d t} \hat{\theta}-\frac{v^{2}}{r} \hat{r} \quad \sum \vec{F}=\sum \vec{F}_{r}+\sum \vec{F}_{t}
$$

- In uniform circular motion, $\mathrm{v}=$ constant $\rightarrow \mathrm{a}_{\mathrm{t}}=0 \rightarrow \mathrm{a}=\mathrm{a}_{\mathrm{r}}$

49. A puck of mass m slides on a frictionless table while attached to a hanging cylinder of mass M by a cord through a hole in the table. What speed keeps the cylinder at rest?

$$
\begin{aligned}
& \text { For } M \rightarrow T=M g \rightarrow a_{c}=0 \\
& \text { For } m \rightarrow T=m \frac{v^{2}}{r} \rightarrow M g=m \frac{v^{2}}{r} \rightarrow v=\sqrt{\frac{M g r}{m}}
\end{aligned}
$$

Calculate the drag force on a missile 53 cm in diameter cruising with a speed of $250 \mathrm{~m} / \mathrm{s}$ at low altitude, where the density of air is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$. Assume C=0.75

$$
D=\frac{1}{2} C \rho A v^{2}=0.5 \cdot 0.75 \cdot\left(1.2 \mathrm{~kg} / \mathrm{m}^{3}\right) \cdot \pi \cdot(0.53 \mathrm{~m} / 2)^{2}(250 \mathrm{~m} / \mathrm{s})^{2}=6.2 \mathrm{kN}
$$

32. The terminal speed of a ski diver is $160 \mathrm{~km} / \mathrm{h}$ in the spread eagle position and $310 \mathrm{~km} / \mathrm{h}$ in the nosedive position. Assuming that the diver's drag coefficient C does not change from one point to another, find the ratio of the effective cross sectional area A in the slower position to that of the faster position.

$$
v_{t}=\sqrt{\frac{2 F_{g}}{C \rho A}} \rightarrow \frac{160 \mathrm{~km} / \mathrm{h}}{310 \mathrm{~km} / \mathrm{h}}=\frac{\sqrt{\frac{2 F_{g}}{C \rho A_{E}}}}{\sqrt{\frac{2 F_{g}}{C \rho A_{D}}}}=\frac{\sqrt{A_{D}}}{\sqrt{A_{E}}} \rightarrow \frac{A_{E}}{A_{D}}=3.7
$$

$$
\begin{aligned}
& \text { 11P. A worker wishes to pile a cone of sand onto a circular area in his yard. The radius of the circle is } \\
& \mathrm{R} \text {, and no sand is to spill into the surrounding area. If } \mu_{\mathrm{s}} \text { is the static coefficient of friction between } \\
& \text { each layer of sand along the slope and the sand beneath it (along which it might slip), show that } \\
& \text { the greatest volume of sand that can be stored in this manner is } \pi \mu \mathrm{s} \mathrm{R}^{3} / 3 \text {. (The volume of a cone } \\
& \text { is } \mathrm{Ah} / 3 \text {, where } \mathrm{A} \text { is the base area and } \mathrm{h} \text { is the cone's height). } \\
& \text { - To pile the most sand without extending the radius, sand is added to make the } \\
& \text { height " } h \text { " as great as possible. } \\
& \text { - Eventually, the sides become so steep that sand at the surface begins to slip. } \\
& \text { - Goal: find the greatest height (greatest slope) for which the sand does not slide. }
\end{aligned}
$$

Cross section of sand's cone
Static friction \rightarrow grain does not move

$$
N=F_{g y}=m g \cos \theta
$$

$f=F_{g x}=m g \sin \theta \quad$ If grain does not slide
\downarrow
$F_{g x}=m g \sin \theta \leq f_{s, \max }=\mu_{s} N=\mu_{s} m g \cos \theta \rightarrow \mu_{s} \geq \tan \theta$
The surface of the cone has the greatest slope and the height of the cone is maximum if :

$$
\begin{aligned}
& \mu_{s}=\tan \theta=\frac{h}{R} \rightarrow h=R \mu_{s} \\
& V_{\text {cone }}=\frac{A \cdot h}{3}=\frac{\pi R^{2}\left(R \mu_{s}\right)}{3}=\frac{\pi \mu_{s} R^{3}}{3}
\end{aligned}
$$

21. Block B weighs $\mathbf{7 1 1}$. The coefficient of static friction between the block and the table is $\mathbf{0 . 2 5}$; assume that the cord between B and the knot is horizontal. Find the maximum weight of block \mathbf{A} for which the system will be stationary.

$$
\text { System stationary } \rightarrow f_{s, \max }=\mu_{s} N
$$

Block $B \rightarrow N=m_{B} g$

$$
T_{1}-f_{s, \max }=0 \rightarrow T_{1}=0.25 \cdot 711 \mathrm{~N}=177.75 \mathrm{~N}
$$

Knot $\rightarrow T_{1}=T_{2 x}=T_{2} \cos 30^{\circ} \rightarrow T_{2}=\frac{177.75 \mathrm{~N}}{\cos 30^{\circ}}=205.25 \mathrm{~N}$

$$
T_{2 y}=T_{2} \sin 30^{\circ}=T_{3}
$$

Block $A \rightarrow T_{3}=m_{A} g=T_{2} \sin 30^{\circ}=0.5 \cdot 205.25 \mathrm{~N}=102.62 \mathrm{~N}$

23P. Two blocks of weights 3.6 N and 7.2 N , are connected by a massless string and slide down a 30° inclined plane. The coefficient of kinetic friction between the lighter block and the plane is 0.10; that between the heavier block and the plane is 0.20. Assuming that the lighter block leads, find (a) the magnitude of the acceleration of the blocks and (b) the tension in the string. (c) Describe the motion if, instead, the heavier block leads.

Block A

Light block A leads

Light block A leads

$$
\begin{aligned}
& \text { Block } A \rightarrow N_{A}=F_{g y A}=m_{A} g \cos 30^{\circ}=3.12 \mathrm{~N} \\
& f_{k A}=\mu_{k A} N_{A}=(0.1)(3.12 N)=0.312 N \\
& F_{g x A}-f_{k A}-T=m_{A} a \rightarrow(3.6 N) \sin 30^{\circ}-0.312 N-T=0.37 a \rightarrow 1.49-T=0.37 a \\
& \text { Block } B \rightarrow N_{B}=F_{g y B}=m_{B} g \cos 30^{\circ}=6.23 \mathrm{~N} \\
& a=3.49 \mathrm{~m} / \mathrm{s}^{2} \\
& f_{k B}=\mu_{k B} N_{B}=(0.2)(6.23 N)=1.25 N \\
& F_{g x B}+T-f_{k B}=m_{B} a \rightarrow(7.2 N) \sin 30^{\circ}+T-1.25 N=0.73 a \rightarrow 2.35+T=0.73 a \\
& T=\left(\frac{W_{A} W_{B}}{W_{A}+W_{B}}\right)\left(\mu_{k B}-\mu_{k A}\right) \cos \theta=0.2 N
\end{aligned}
$$

Heavy block B leads

Reversing the blocks is equivalent to switching the labels. This would give $T \sim\left(\mu_{\mathrm{kA}}-\mu_{\mathrm{kB}}\right)<0$ impossible!!!
The above set of equations is not valid in this circumstance $\rightarrow \mathrm{a}_{\mathrm{A}} \neq \mathrm{a}_{\mathrm{B}} \rightarrow$ The blocks move independently from each other.
4. A block weighing 22 N is held against a vertical wall by a horizontal force F of magnitude 60 N . The coefficient of static friction between the wall and the block is 0.55 and the coefficient of kinetic friction between them is 0.38 . A second P acting parallel to the wall is applied to the block. For the following magnitudes and directions of P, determine whether the block moves, the direction of motion, and the magnitude and direction of the frictional force acting on the block: (a) 34 N up (b) 12 N up, (c) 48 N up, (d) 62 N up, (e) 10 N down, (f) 18 N down.
(a) $P=34 N$, up

Without P , the block is at rest \rightarrow
$f_{s, \text { max }}=\mu_{s} N=0.55(60 N)=33 N$
$f_{k}=\mu_{k} N=0.38(60 N)=22.8 N$
$P-m g-f=m a$
If we assume $f=f_{s} \rightarrow a=0$
$\mathrm{N}=\mathrm{F}=60 \mathrm{~N}$ $34 N-22 N=f \rightarrow f=12 N$ down $f<f_{s, \text { max }}=33 N \rightarrow$ Block does not move
(b) $P=12 N$, up
(c) $P=48 \mathrm{~N}$, up
f $\mathbf{P} \quad P+f-m g=m a=0$
$f=22 N-12 N=10 N u p$ $f<f_{s, \max }=33 \mathrm{~N} \rightarrow$ Not moving
22N 22N $\begin{array}{ll}\mathbf{P} & P-f-m g=m a=0 \\ f=48 N-22 N=26 N \text { down } \\ f<f_{s, \max }=33 N \rightarrow \text { Not moving }\end{array}$
(d) $P=62 N$, up
$P-f-m g=0\left({ }^{*}\right) \rightarrow f=62 N-22 N=40 N$ up
$f>f_{s, \max }=33 N \rightarrow$ Block moves up \rightarrow Assumption (*) wrong
$\rightarrow P-f-m g=m a$ with $f=f_{k}=22.8 \mathrm{~N}$ down

