Physics for Scientists and Engineers I

PHY 2048, Section 4

Dr. Beatriz Roldán Cuenya

University of Central Florida, Physics Department, Orlando, FL

Chapter 1 - Introduction

- I. General
- II. International System of Units
- III. Conversion of units
- IV. Dimensional Analysis
- V. Problem Solving Strategies

I. Objectives of Physics

- Find the limited number of fundamental laws that govern natural phenomena.
- Use these laws to develop theories that can predict the results of future experiments.
- -Express the laws in the language of mathematics.
- Physics is divided into six major areas:
 - 1. Classical Mechanics (PHY2048)
 - 2. Relativity
 - 3. Thermodynamics
 - 4. Electromagnetism (PHY2049)
 - 5. Optics (PHY2049)
 - 6. Quantum Mechanics

II. International System of Units

QUANTITY	UNIT NAME	UNIT SYMBOL		
Length	meter	m		
Time	second	s		
Mass	kilogram	kg		
Speed		m/s		
Acceleration		m/s²		
Force	Newton	N		
Pressure	Pascal	Pa = N/m ²		
Energy	Joule	J = Nm		
Power	Watt W = J/s			
Temperature	Kelvin	К		

POWER	PREFIX	ABBREVIATION		
1015	peta	P		
1012	tera	T		
109	giga	G		
106	mega	М		
10 ³	kilo	k		
10 ²	hecto	h		
101	deka	da		
10-1	deci	D		
10-2	centi	С		
10-3	milli	m		
10-6	micro	μ		
10-9	nano	n		
10 ⁻¹²	pico	p		
10 ⁻¹⁵	femto	f		

III. Conversion of units

Chain-link conversion method: The original data are multiplied successively by conversion factors written as unity. Units can be treated like algebraic quantities that can cancel each other out.

Example: 316 feet/h → m/s

$$\left(316 \frac{\text{feet}}{\text{M}}\right) \cdot \left(\frac{1 \text{M}}{3600 \text{s}}\right) \cdot \left(\frac{1 \text{m}}{3.28 \text{ feet}}\right) = 0.027 \text{ m/s}$$

IV. Dimensional Analysis

Dimension of a quantity: indicates the type of quantity it is; length [L], mass [M], time [T]

Dimensional consistency: both sides of the equation must have the same dimensions.

Example: $x=x_0+v_0t+at^2/2$

$$[L] = [L] + \frac{[L]}{[p]}[p'] + \frac{[L]}{[p'^2]}[p'^2] = [L] + [L] + [L]$$

Note: There are no dimensions for the constant (1/2)

Table 1.0
Units of Area, Volume, Velocity, Speed, and Acceleration

System	Area (\mathbf{L}^2)	Volume (L^3)	Speed (L/T)	Acceleration (L/T^2)
SI	m^2	m ³	m/s	m/s^2
U.S. customary	ft^2	ft^3	ft/s	ft/s^2

© 2004 Thomson/Brooks Cole

T-11- 1 C

Significant figure → one that is reliably known.

Zeros may or may not be significant:

- Those used to position the decimal point are not significant.
- To remove ambiguity, use scientific notation.

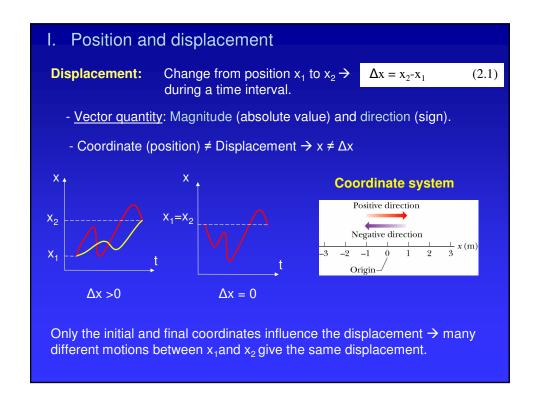
2.56 m/s has 3 significant figures, 2 decimal places.
0.000256 m/s has 3 significant figures and 6 decimal places.
10.0 m has 3 significant figures.

1500 m is ambiguous \rightarrow 1.5 x 10³ (2 figures), 1.50 x 10³ (3 fig.), 1.500 x 10³ (4 figs.)

Order of magnitude \rightarrow the power of 10 that applies.

V. Problem solving tactics

- Explain the problem with your own words.
- Make a good picture describing the problem.
- Write down the given data with their units. Convert all data into S.I. system.
- Identify the unknowns.
- Find the connections between the unknowns and the data.
- Write the physical equations that can be applied to the problem.
- Solve those equations.
- Always include units for every quantity. Carry the units through the entire calculation.
- \bullet Check if the values obtained are reasonable \Rightarrow order of magnitude and units.


MECHANICS → Kinematics

Chapter 2 - Motion along a straight line

- I. Position and displacement
- II. Velocity
- III. Acceleration
- IV. Motion in one dimension with constant acceleration
- V. Free fall

Particle: point-like object that has a mass but infinitesimal size.

Position: Defined in terms of a frame of reference: x or y axis in 1D. The object's position is its location with respect to the frame of reference. Position-Time graph: shows the motion of the particle (car). The smooth curve is a guess as to what happened between the data points.

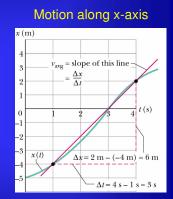
Distance: length of a path followed by a particle.

- Scalar quantity

Displacement ≠ Distance

Example: round trip house-work-house → distance traveled = 10 km displacement = 0

Review:


- Vector quantities need both magnitude (size or numerical value) and direction to completely describe them.
 - We will use + and signs to indicate vector directions.
- Scalar quantities are completely described by magnitude only.

II. Velocity

Average velocity: Ratio of the displacement Δx that occurs during a particular time interval Δt to that interval.

$$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$
 (2.2)

- -Vector quantity → indicates not just how fast an object is moving but also in which direction it is moving.
- SI Units: m/s
- Dimensions: Length/Time [L]/[T]
- The slope of a straight line connecting 2 points on an x-versus-t plot is equal to the <u>average velocity</u> during that time interval.

Average speed:

Total distance covered in a time interval.

$$S_{avg} = \frac{Total \ distance}{\Delta t}$$
 (2.3)

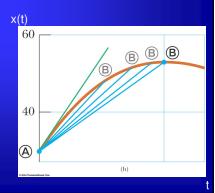
S_{avg} ≠ magnitude V_{avg}

S_{avg} always >0

Scalar quantity

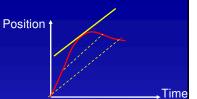
Same units as velocity

Example: A person drives 4 mi at 30 mi/h and 4 mi and 50 mi/h \rightarrow Is the average speed >,<,= 40 mi/h ? <a>40 mi/h


 t_1 = 4 mi/(30 mi/h)=0.13 h ; t_2 = 4 mi/(50 mi/h)=0.08 h \rightarrow t_{tot} = 0.213 h

 \rightarrow S_{avq}= 8 mi/0.213h = 37.5mi/h

Instantaneous velocity: How fast a particle is moving at a given instant.


$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$
 (2.4)

- Vector quantity
- The limit of the average velocity as the time interval becomes infinitesimally short, or as the time interval approaches zero.
- The instantaneous velocity indicates what is happening at every point of time.
- Can be positive, negative, or zero.
- The instantaneous velocity is the slope of the line tangent to the *x* vs. *t* curve (green line).

Instantaneous velocity:

Slope of the particle's position-time curve at a given instant of time. V is tangent to x(t) when $\Delta t \rightarrow 0$

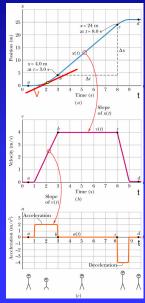
When the velocity is constant, the average velocity over any time interval is equal to the instantaneous velocity at any time.

Instantaneous speed: Magnitude of the instantaneous velocity.

Example: car speedometer.

- Scalar quantity

Average velocity (or average acceleration) always refers to an specific time interval.

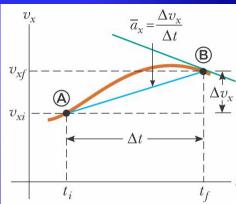

Instantaneous velocity (acceleration) refers to an specific instant of time.

Ш. Acceleration

Average acceleration: Ratio of a change in velocity Δv to the time interval Δt in which the change occurs.

$$a_{avg} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$
 (2.5)

- Vector quantity
- Dimensions [L]/[T]², Units: m/s²
- The average acceleration in a "v-t" plot is the slope of a straight line connecting points corresponding to two different times.


Instantaneous acceleration: Limit of the average acceleration as Δt approaches zero.

- Vector quantity

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d^2 x}{dt^2}$$

(2.6)

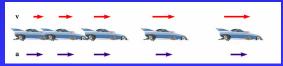
- The instantaneous acceleration is the slope of the tangent line (v-t plot) at a particular time. (green line in B)
- Average acceleration: blue line.
- When an object's velocity and acceleration are in the same direction (same sign), the object is speeding up.
- When an object's velocity and acceleration are in the opposite direction, the object is slowing down.

- Positive acceleration does not necessarily imply speeding up, and negative acceleration slowing down.

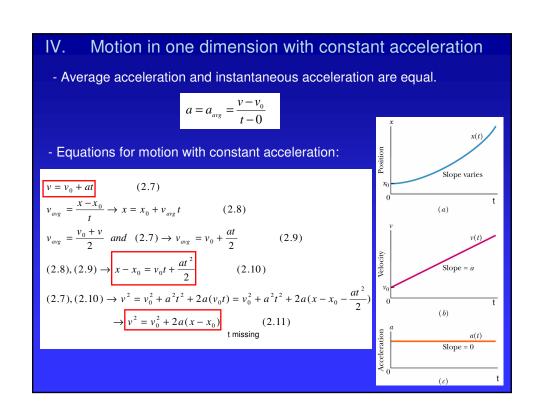
Example (1): v_1 = -25m/s; v_2 = 0m/s in 5s \rightarrow particle slows down, a_{avg} = 5m/s²

- An object can have simultaneously v=0 and a≠0

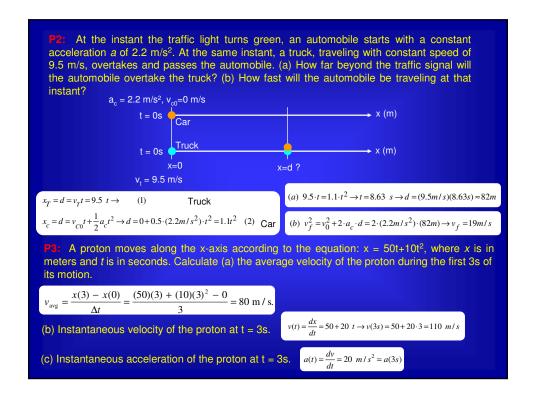
Example (2): $x(t)=At^2 \rightarrow v(t)=2At \rightarrow a(t)=2A$; At t=0s, v(0)=0 but a(0)=2A

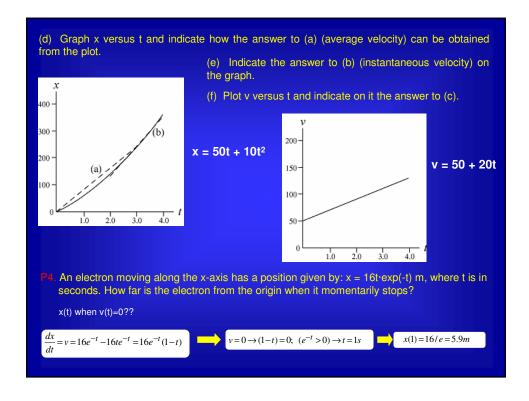

Example (3):

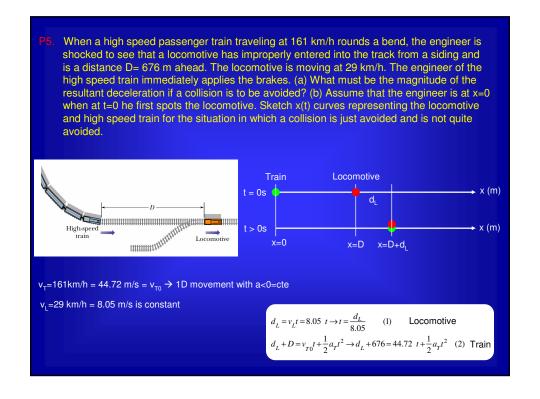
- The car is moving with constant positive velocity (red arrows maintaining same size) → Acceleration equals zero.


Example (4):

- + acceleration
- + velocity




- Velocity and acceleration are in the same direction, "a" is uniform (blue arrows of same length) \rightarrow Velocity is increasing (red arrows are getting longer).


- acceleration + velocity - Acceleration and velocity are in opposite directions. - Acceleration is uniform (blue arrows same length). - Velocity is decreasing (red arrows are getting shorter).

PROBLEMS - Chapter 2 P1. A red car and a green car move toward each other in adjacent lanes and parallel to The x-axis. At time t=0, the red car is at x=0 and the green car at x=220 m. If the red car has a constant velocity of 20km/h, the cars pass each other at x=44.5 m, and if it has a constant velocity of 40 km/h, they pass each other at x=76.6m. What are (a) the initial velocity, and (b) the acceleration of the green car? $\left(\frac{10^3 m}{1km}\right) = 11.11 m/s$ v_{r2}=40km/h v_{r1}=20km/h X_{r2}=76.6m (1) d=220 m $X_{r1} = 44.5 \text{ m}$ X_a=220m $\frac{44.5m}{}$ = 8s $x_{r2} - x_g = \bigoplus_{g \neq 0} t_2 \bigoplus_{g \neq 0} 0.5 \cdot a_g t_2^2 \to 76.6 - 220 = -v_{g0} \cdot (6.9s) - 0.5 \cdot (6.9s)^2 a_g$ 5.55m/s 76.6<u>m</u> $x_{r_1} - x_g = \bigoplus_{g \neq 0} t_1 \bigoplus_{1 \leq 0.5} a_g t_1^2 \longrightarrow 44.5 - 220 = -v_{g \neq 0} \cdot (8s) - 0.5 \cdot (8s)^2 a_g$ $x_{r2} = v_{r2}t_2 \to t_2 = \frac{11.11m/s}{1}$ $a_g = 2.1 \text{ m/s}^2$ $v_{0g} = 13.55 \text{ m/sc}$ The car moves to the left (-) in my reference system → a<0, v<0

$$v_{Tf} = v_{T0} + a_T t = 0 \rightarrow a_T = \frac{-44.72 m/s}{t} = (eq. \ 1) = \frac{(-44.72 m/s)(8.05 m/s)}{d_L} = \frac{-360 m^2/s^2}{d_L}$$
 (3)
$$v^2_{Tf} = v^2_{T0} + 2a_T (D + d_L) = 0 - a_T = \frac{-(44.72 m/s)^2}{2(676 m + d_L)}$$
 (4)
$$(3) = (4) \rightarrow d_L = 380.3 m$$

$$from \ (1) \rightarrow t = \frac{d_L}{8.05} = 47.24 s$$

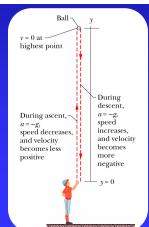
$$(1) + (3) \rightarrow a_T = \frac{-360 m^2/s^2}{380.3 m} = \frac{-0.947 m/s^2}{0.947 m/s^2}$$

$$x_L = 676 + 8.05 t$$

$$x_T = 44.72 t + 0.5 a_T t^2$$

$$x_T = 44.72 t + 0.5 a_T t^2$$
 • Collision can be avoided: Slope of x(t) vs. t locomotive at t = 47.24 s (the point were both Lines meet) = v instantaneous locom > Slope of x(t) vs. t train • Collision cannot be avoided: Slope of x(t) vs. t locomotive at t = 47.24 s < Slope of x(t) vs. t train • Collision cannot be avoided: Slope of x(t) vs. t locomotive at t = 47.24 s < Slope of x(t) vs. t train • Collision cannot be avoided: Slope of x(t) vs. t locomotive at t = 47.24 s < Slope of x(t) vs. t train • Collision cannot be avoided: Slope of x(t) vs. t locomotive at t = 47.24 s < Slope of x(t) vs. t train • Collision cannot be avoided: Slope of x(t) vs. t train • Collision cannot be avoided: Slope of x(t) vs. t locomotive at t = 47.24 s < Slope of x(t) vs. t train • Collision cannot be avoided: Slope of x(t) vs. t locomotive at t = 47.24 s < Slope of x(t) vs. t train

- The motion equations can also be obtained by indefinite integration:


$$\begin{split} dv &= a \ dt \rightarrow \int dv = \int a \ dt \rightarrow v = at + C; \qquad v = v_0 \quad at \quad t = 0 \rightarrow v_0 = (a)(0) + C \rightarrow v_0 = C \rightarrow v = v_0 + at \\ dx &= v \ dt \rightarrow \int dx = \int v \ dt \rightarrow \int dx = \int (v_0 + at) dt \rightarrow \int dx = v_0 \int dt + a \int t \ dt \rightarrow x = v_0 t + \frac{1}{2} at^2 + C'; \\ x &= x_0 \quad at \quad t = 0 \rightarrow x_0 = v_0(0) + \frac{1}{2} a(0) + C' \rightarrow x_0 = C' \rightarrow x = x_0 + v_0 t + \frac{1}{2} at^2 \end{split}$$

V. Free fall

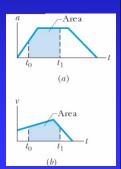
Motion direction along y-axis (y >0 upwards)

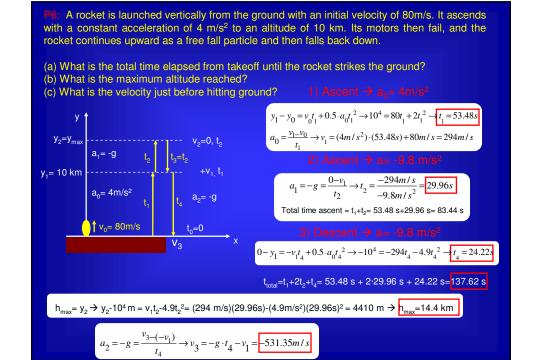
Free fall acceleration: (near Earth's surface) $a=-g=-9.8 \text{ m/s}^2$ (in mov. eqs. with constant acceleration)

Due to gravity → downward on y, directed toward Earth's center

Approximations:

- Locally, Earth's surface essentially flat → free fall "a" has same direction at slightly different points.
- All objects at the same place have same free fall "a" (neglecting air influence).


VI. Graphical integration in motion analysis


From a(t) versus t graph \rightarrow integration = area between acceleration curve and time axis, from t_0 to $t_1 \rightarrow v(t)$

$$v_1 - v_0 = \int_{t_0}^{t_1} a \cdot dt$$

Similarly, from v(t) versus t graph \rightarrow integration = area under curve from t_0 to $t_1 \rightarrow x(t)$

$$x_1 - x_0 = \int_{t_0}^{t_1} v \cdot dt$$

