Physics for Scientists and Engineers I

PHY 2048, Section 4

Dr. Beatriz Roldán Cuenya

University of Central Florida, Physics Department, Orlando, FL

Chapter 0 - Introduction

I. General
II. International System of Units
III. Conversion of units
IV. Dimensional Analysis
V. Problem Solving Strategies

I. Objectives of Physics

Find the limited number of fundamental laws that govern natural phenomena.

- Use these laws to develop theories that can predict the results of future experiments.
-Express the laws in the language of mathematics.
- Physics is divided into six major areas:

1. Classical Mechanics
2. Relativity
3. Thermodynamics
4. Electromagnetism (PHY2049)
5. Optics (PHY2049)
6. Quantum Mechanics
II. International System of Units

QUANTITY	UNIT NAME	UNIT SYMBOL
Length	meter	m
Time	second	s
Mass	kilogram	kg
Speed		m / s
Acceleration	Newton	s
Force	Pascal	N
Pressure	Joule	$\mathrm{J}=\mathrm{Nm} / \mathrm{m}^{2}$
Energy	Watt	$\mathrm{W}=\mathrm{J} / \mathrm{s}$
Power	Kelvin	K
Temperature		

POWER	PREFIX	ABBREVIATION
10^{15}	peta	P
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10^{1}	deka	D
10^{-1}	deci	c
10^{-2}	centi	m
10^{-3}	milli	μ
10^{-6}	micro	n
10^{-9}	nano	p
10^{-12}	pico	f
10^{-15}	femto	

III. Conversion of units

Chain-link conversion method: The original data are multiplied successively by conversion factors written as unity. Units can be treated like algebraic quantities that can cancel each other out.

Example: 316 feet/h $\rightarrow \mathrm{m} / \mathrm{s}$

$$
\left(316 \frac{\text { feet }}{K}\right) \cdot\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right) \cdot\left(\frac{1 \mathrm{~m}}{3.28 \text { feet }}\right)=0.027 \mathrm{~m} / \mathrm{s}
$$

IV. Dimensional Analysis

Dimension of a quantity: indicates the type of quantity it is; length [L], mass [M], time [T]

Dimensional consistency: both sides of the equation must have the same dimensions.

Example: $\mathrm{x}=\mathrm{x}_{0}+\mathrm{v}_{0} \mathrm{t}+\mathrm{at} \mathrm{t}^{2} / 2$

$$
[L]=[L]+\frac{[L]}{[T]}\left[X^{\prime}\right]+\frac{[L]}{\left[T^{2}\right]}\left[\mathbb{D}^{2}\right]=[L]+[L]+[L]
$$

Note: There are no dimensions for the constant (1/2)

Table 1.6

Units of Area, Volume, Velocity, Speed, and Acceleration

System	Area $\left(\mathrm{L}^{2}\right)$	Volume $\left(\mathbf{L}^{3}\right)$	Speed $(\mathbf{L} / \mathbf{T})$	Acceleration $\left(\mathbf{L} / \mathbf{T}^{2}\right)$
SI	m^{2}	$\mathrm{~m}^{3}$	$\mathrm{~m} / \mathrm{s}$	$\mathrm{m} / \mathrm{s}^{2}$
U.S. customary	ft^{2}	ft^{3}	ft / s	$\mathrm{ft} / \mathrm{s}^{2}$

Significant figure \rightarrow one that is reliably known.
Zeros may or may not be significant:

- Those used to position the decimal point are not significant.
- To remove ambiguity, use scientific notation.
$2.56 \mathrm{~m} / \mathrm{s}$ has 3 significant figures, 2 decimal places.
$0.000256 \mathrm{~m} / \mathrm{s}$ has 3 significant figures and 6 decimal places.
10.0 m has 3 significant figures.

1500 m is ambiguous $\rightarrow 1.5 \times 10^{3}$ (2 figures), 1.50×10^{3} (3 fig.),
1.500×10^{3} (4 figs.)
Order of magnitude \rightarrow the power of 10 that applies.

V. Problem solving tactics

- Explain the problem with your own words.
- Make a good picture describing the problem.
- Write down the given data with their units. Convert all data into S.I. system.
- Identify the unknowns.
- Find the connections between the unknowns and the data.
- Write the physical equations that can be applied to the problem.
- Solve those equations.
- Always include units for every quantity. Carry the units through the entire calculation.
- Check if the values obtained are reasonable \rightarrow order of magnitude and units.

Chapter 1 - Vectors

I. Definition
II. Arithmetic operations involving vectors
A) Addition and subtraction

- Graphical method
- Analytical method \rightarrow Vector components
B) Multiplication

Displacement \rightarrow does not describe the object's path.

Scalar quantity: quantity with magnitude, no direction.
Examples: temperature, pressure
II. Arithmetic operations involving vectors

Vector addition: $\vec{s}=\vec{a}+\vec{b}$

Geometrical method

Rules:

Vector subtraction: $\vec{d}=\vec{a}-\vec{b}=\vec{a}+(-\vec{b})$

Vector component: projection of the vector on an axis.

Vectors \& Physics:

-The relationships among vectors do not depend on the location of the origin of the coordinate system or on the orientation of the axes.

- The laws of physics are independent of the choice of coordinate system.

Multiplying vectors:

- Vector by a scalar: $\vec{f}=s \cdot \vec{a}$
- Vector by a vector:

> Scalar product = scalar quantity
(dot product)
Component of \vec{b} along direction of

$$
\begin{equation*}
\vec{a} \cdot \vec{b}=a b \cos \phi=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} \tag{3.9}
\end{equation*}
$$

$\vec{i} \cdot \vec{i}=\vec{j} \cdot \vec{j}=\vec{k} \cdot \vec{k}=1 \cdot 1 \cdot \cos 0^{\circ}=1$
$\vec{i} \cdot \vec{j}=\vec{j} \cdot \vec{i}=\vec{i} \cdot \vec{k}=\vec{k} \cdot \vec{i}=\vec{j} \cdot \vec{k}=\vec{k} \cdot \vec{j}=1 \cdot 1 \cdot \cos 90^{\circ}=0$

Angle between two vectors:

$$
\cos \varphi=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|}
$$

Multiplying vectors:

- Vector by a vector

Vector product $=$ vector $\quad($ cross product $)$

$$
\begin{aligned}
& \vec{a} \times \vec{b}=\vec{c}=\left(a_{y} b_{z}-b_{y} a_{z}\right) \hat{i}-\left(b_{z} a_{x}-a_{z} b_{x}\right) \hat{j}+\left(a_{x} b_{y}-b_{x} a_{y}\right) \hat{k} \\
& c=a b \sin \phi \quad \text { Magnitude }
\end{aligned}
$$

Rule:
$\vec{b} \times \vec{a}=-(\vec{a} \times \vec{b})$

\vec{c} perpendicular to plane containing \vec{a}, \vec{b}

1) Place \vec{a} and \vec{b} tail to tail without altering their orientations.
2) \vec{c} will be along a line perpendicular to the plane that contains \vec{a} and \vec{b} where they meet.
3) Sweep \vec{a} into b through the smallest angle between them.

$|\vec{i} \times \vec{i}|=|\vec{j} \times \vec{j}|=|\vec{k} \times \vec{k}|=1 \cdot 1 \cdot \sin 0^{\circ}=0$

$$
\begin{aligned}
& \vec{i} \times \vec{i}=\vec{j} \times \vec{j}=\vec{k} \times \vec{k}=\overrightarrow{0} \\
& \vec{i} \times \vec{j}=-(\vec{j} \times \vec{i})=\vec{k} \\
& \vec{j} \times \vec{k}=-(\vec{k} \times \vec{j})=\vec{i} \\
& \vec{k} \times \vec{i}=-(\vec{i} \times \vec{k})=\vec{j}
\end{aligned}
$$

Determinant Evaluation Example

For a determinant of order three the evaluation rule is

T ake the elements of the top row and multiply them times the determinant of their cofactors. The cofactor is the array left when the row and column of the given top row element is eliminated. The evaluation of the determinant of the cofactor follows the same pattern until the cofactor has dimension two. At that point, it's value is the difference of the diagonal products.

P1: If \vec{B} is added to $\vec{C}=3 \hat{i}+4 \hat{j}$, the result is a vector in the positive direction of the y axis, with a magnitude equal to that of \vec{C}. What is the magnitude of \vec{B} ?

$$
\begin{aligned}
& \vec{B}+\vec{C}=\vec{B}+(3 \hat{i}+4 \hat{j})=\vec{D}=D \hat{j} \\
& |C|=|D|=\sqrt{3^{2}+4^{2}}=5 \\
& \vec{B}+(3 \hat{i}+4 \hat{j})=5 \hat{j} \rightarrow \vec{B}=-3 \hat{i}+\hat{j} \rightarrow|B|=\sqrt{9+1}=3.2
\end{aligned}
$$

A fire ant goes through three displacements along level ground: $\mathrm{d}_{1} \overrightarrow{\text { for }} 0.4 \mathrm{~m} \mathrm{SW}, \mathrm{d}_{2} \overrightarrow{0} .5 \mathrm{~m} E, \mathrm{~d}_{3}=0.6 \mathrm{~m}$ at 60° North of East. Let the positive x direction be East and the positive y direction be North. (a) What are the x and y components of \vec{d}_{1}, d_{2} and \vec{d}_{3} ? (b) What are the x and the y components, the magnitude and the direction of the ant's net displacement? (c) If the ant is to return directly to the starting point, how far and in what direction should it move?

$$
\begin{aligned}
& { }^{(a)} d_{1 . x}=-0.4 \cos 45^{\circ}=-0.28 m \\
& \begin{array}{l}
d_{1 x}=-0.4 \cos 45=-0.28 m \\
d_{1 y}=-0.4 \sin 45^{\circ}=-0.28 m
\end{array} \\
& d_{2 x}=0.5 m \\
& d_{2 y}=0 \\
& d_{2 y}=0 \\
& d_{3 x}=0.6 \cos 60^{\circ}=0.30 \mathrm{~m} \\
& d_{3 y}=0.6 \sin 60^{\circ}=0.52 \mathrm{~m}
\end{aligned}
$$

(b)
$\vec{d}_{4}=\vec{d}_{1}+\vec{d}_{2}=(-0.28 \hat{i}-0.28 \hat{j})+0.5 \hat{i}=(0.22 \hat{i}-0.28 \hat{j}) m$ $\vec{D}=\vec{d}_{4}+\vec{d}_{3}=(0.22 \hat{i}-0.28 \hat{j})+(0.3 \hat{i}+0.52 \hat{j})=(0.52 \hat{i}+0.24 \hat{j}) m$
$|D|=\sqrt{0.52^{2}+0.24^{2}}=0.57 \mathrm{~m}$
$\theta=\tan ^{-1}\left(\frac{0.24}{0.52}\right)=24.8^{\circ} \quad$ North of East

Return vector \rightarrow negative of net displacement, $\mathrm{D}=0.57 \mathrm{~m}$, directed 25° South of West
$\vec{d}_{1}=4 \hat{i}+5 \hat{j}-6 \hat{k}$
$\vec{d}_{2}=-\hat{i}+2 \hat{j}+3 \hat{k}$
$\vec{d}_{3}=4 \hat{i}+3 \hat{j}+2 \hat{k}$
(a) $\vec{r}=\vec{d}_{1}-\vec{d}_{2}+\vec{d}_{3}$?
(b) Angle between \vec{r} and $+z$?
(c) Component of \vec{d}_{1} along \vec{d}_{2} ?
(d) Component of \vec{d}_{1} perpendicular to \vec{d}_{2} and in plane of \vec{d}_{1}, \vec{d}_{2} ?
(a) $\vec{r}=\vec{d}_{1}-\vec{d}_{2}+\vec{d}_{3}=(4 \hat{i}+5 \hat{j}-6 \hat{k})-(-\hat{i}+2 \hat{j}+3 \hat{k})+(4 \hat{i}+3 \hat{j}+2 \hat{k})=9 \hat{i}+6 \hat{j}-7 \hat{k}$
(b) $\vec{r} \cdot \hat{k}=r \cdot 1 \cdot \cos \theta=-7 \rightarrow \theta=\cos ^{-1}\left(\frac{-7}{12.88}\right)=123^{\circ}$
$r=\sqrt{9^{2}+6^{2}+7^{2}}=12.88 m$
(c) $\vec{d}_{1} \cdot \vec{d}_{2}=-4+10-18=-12=d_{1} d_{2} \cos \theta \rightarrow \cos \theta=\frac{\vec{d}_{1} \cdot \vec{d}_{2}}{d_{1} d_{2}}$
$d_{1 / /}=d_{1} \cos \theta=d_{1} \frac{\vec{d}_{1} \cdot \vec{d}_{2}}{d_{1} d_{2}}=\frac{-12}{3.74}=-3.2 \mathrm{~m}$
$d_{2}=\sqrt{1^{2}+2^{2}+3^{2}}=3.74 \mathrm{~m}$
(d) $d_{1}=\sqrt{d_{1 / /}^{2}+d_{1 \text { perp }}^{2}} \rightarrow d_{1 \text { perp }}=\sqrt{8.77^{2}-3.2^{2}}=8.16 \mathrm{~m}$
$d_{1}=\sqrt{4^{2}+5^{2}+6^{2}}=8.77 \mathrm{~m}$

If | \vec{d}_{1} | $=3 \hat{i}-2 \hat{j}+4 \hat{k}$ |
| ---: | :--- |
| \vec{d}_{2} | $=-5 \hat{i}+2 \hat{j}-\hat{k}$ |$\quad\left(\vec{d}_{1}+\vec{d}_{2}\right) \cdot\left(\vec{d}_{1} \times 4 \vec{d}_{2}\right) ?$

Tip: Think before calculate !!!

Vectors \vec{A} and \vec{B} lie in an xy plane. \vec{A} has a magnitude 8.00 and angle $130^{\circ} ; \vec{B}$ has components $\mathrm{B}_{\mathrm{x}}=-7.72, \mathrm{~B}_{\mathrm{y}}=-9.20$. What are the angles between the negative direction of the y axis and (a) the direction of \vec{A}, (b) the direction of $\vec{A} \times \vec{B}$, (c) the direction of $\overrightarrow{A x}(\vec{B}+3 \hat{k})$?

P5: A wheel with a radius of 45 cm rolls without sleeping along a horizontal floor. At time t_{1} the dot P painted on the rim of the wheel is at the point of contact between the wheel and the floor. At a later time t_{2}, the wheel has rolled through one-half of a revolution. What are (a) the magnitude and (b) the angle (relative to the floor) of the displacement P during this interval?

$\vec{r}=(1.41 m) \hat{i}+(0.9 m) \hat{j}$
$|\vec{r}|=\sqrt{1.41^{2}+0.9^{2}}=1.68 \mathrm{~m}$

$$
\tan \theta=\left(\frac{2 R}{\pi R}\right) \rightarrow \theta=32.5^{\circ}
$$

At time t_{1} At time t_{2}
 35° West of North. What are (a) the magnitude and direction of $(\vec{a}+b)$?. (b) What are the magnitude and direction of ($\mathrm{b}-\mathrm{a}$)? ? (c) Draw a vector diagram for each combination.

$$
\begin{aligned}
& \vec{a}=5 \hat{i} \\
& \vec{b}=-4 \sin 35^{\circ} \hat{i}+4 \cos 35^{\circ} \hat{j}=-2.29 \hat{i}+3.28 \hat{j}
\end{aligned}
$$

$$
\text { (a) } \begin{array}{ll}
\vec{a}+\vec{b}=2.71 \hat{i}+3.28 \hat{j} & \text { (b) } \vec{b}-\vec{a}=\vec{b}+(-\vec{a})=-7.29 \hat{i}+3.28 \hat{j} \\
|\vec{a}+\vec{b}|=\sqrt{2.71^{2}+3.28^{2}}=4.25 m & |\vec{b}-\vec{a}|=\sqrt{7.29^{2}+3.28^{2}}=8 m \\
\tan \theta=\left(\frac{3.28}{2.71}\right) \rightarrow \theta=50.43^{\circ} & \tan \theta=\left(-\frac{3.28}{7.29}\right) \rightarrow \theta=-24.2^{\circ} \\
& \text { or } 180^{\circ}+\left(-24.2^{\circ}\right)=155.8
\end{array}
$$

$$
180^{\circ}-155.8^{\circ}=24.2^{\circ} \text { North of West }
$$

