Chapter 12 - Equilibrium and Elasticity

I. Equilibrium

- Definition
- Requirements
- Static equilibrium
II. Center of gravity
III. Elasticity
- Tension and compression
- Shearing
- Hydraulic stress

I. Equilibrium

- Definition: An object is in equilibrium if:
- The linear momentum of its center of mass is constant.
- Its angular momentum about its center of mass is constant.

Example: block resting on a table, hockey puck sliding across a frictionless surface with constant velocity, the rotating blades of a ceiling fan, the wheel of a bike traveling across a straight path at constant speed.

- Static equilibrium:

$$
\begin{array}{lll}
\vec{P}=0, & \vec{L}=0 & \begin{array}{l}
\text { Objects that are not moving either in } \\
\text { TRANSLATION or ROTATION }
\end{array}
\end{array}
$$

Example: block resting on a table.

Stable static equilibrium:

If a body returns to a state of static equilibrium after having been displaced from it by a force \rightarrow marble at the bottom of a spherical bowl.

Unstable static equilibrium:

A small force can displace the body and end the equilibrium.

(1) Torque about supporting edge by F_{g} is 0 because line of action of F_{g} passes through rotation axis \rightarrow domino in equilibrium.
(2) Slight force ends equilibrium \rightarrow line of action of F_{g} moves to one side of supporting edge \rightarrow torque due to F_{g} increases domino rotation.
(3) Not as unstable as (1) \rightarrow in order to topple it, one needs to rotate it beyond balance position in (1).

- Requirements of equilibrium:
$\vec{P}=$ cte $\rightarrow \vec{F}_{n e t}=\frac{d \vec{P}}{d t}=0 \quad$ Balance of forces \rightarrow translational equilibrium
$\vec{L}=$ cte,$\quad \vec{\tau}_{n e t}=\frac{d \vec{L}}{d t}=0 \quad$ Balance of torques \rightarrow rotational equilibrium
- Vector sum of all external forces that act on body must be zero.
- Vector sum of all external torques that act on the body, measured about any possible point must be zero.

Balance of forces $\rightarrow \mathrm{F}_{\text {net,x }}=\mathrm{F}_{\text {net,y }}=\mathrm{F}_{\text {net, } \mathrm{z}}=0$

Balance of torques $\rightarrow \tau_{\text {net }, \mathrm{x}}=\tau_{\text {net, } y}=\tau_{\text {net }, \mathrm{z}}=0$

II. Center of gravity

Gravitational force on extended body \rightarrow vector sum of the gravitational forces acting on the individual body's elements (atoms)
$\boldsymbol{\operatorname { c o g }}=$ Body's point where the gravitational force "effectively" acts.

This course initial assumption: The center of gravity is at the center of mass.

If g is the same for all elements of a body, then the body's Center Of Gravity (COG) is coincident with the body's Center Of Mass (COM).

Assumption valid for every day objects \rightarrow " g " varies only slightly along Earth's surface and decreases in magnitude slightly with altitude.

Proof:

$$
\begin{aligned}
& x_{\operatorname{cog}} \sum_{i} F_{g i}=\sum_{i} x_{i} F_{g i} \rightarrow x_{\operatorname{cog}} \sum_{i} m_{i} g_{i}=\sum_{i} x_{i} m_{i} g_{i} \rightarrow x_{\operatorname{cog}} \sum_{i} m_{i}=\sum_{i} x_{i} m_{i} \\
& \rightarrow x_{\text {cog }}=\frac{1}{M} \sum_{i} x_{i} m_{i}=x_{c o m}
\end{aligned}
$$

of mass about the origin O , with moment arm x_{i}.

$$
\tau=r_{\perp} F \rightarrow \tau_{i}=x_{i} F_{g i} \rightarrow \tau_{\text {net }}=\sum_{i} \tau_{i}=\sum_{i} x_{i} F_{g i}
$$

$$
\tau=x_{\operatorname{cog}} F_{g}=x_{\operatorname{cog}} \sum_{i} F_{g i}=\tau_{n e t}
$$

III. Elasticity

Branch of physics that describes how real bodies deform when forces are applied to them.

Real rigid bodies are elastic \rightarrow we can slightly change their dimensions by pulling, pushing, twisting or compressing them.

Stress: Deforming force per unit area.
Strain: Unit deformation

Shearing stress

Hydraulic stress

Tensile stress: associated
with stretching

Elastic modulus: describes the elastic behavior (deformations) of objects as they respond to forces that act on them.

Stress = Elasticity Modulus x Strain

(1) Stress $=$ cte \times Strain \rightarrow Recovers original dimensions when stress removed.
(2) Stress $>$ yield strength $S_{y} \rightarrow$ specimen becomes permanently deformed.
(3) Stress $>$ ultimate strength $\mathrm{S}_{\mathrm{u}} \rightarrow$ specimen breaks.

Tension and compression:
Stress $=\frac{F}{A}$
($F=$ force applied perpendicular to the area A of the object)

Strain $=\frac{\Delta L}{L} \quad$ (fractional change in length of the specimen)
Stress $=$ (Young's modulus) \times Strain

$$
\frac{F}{A}=E \frac{\Delta L}{L}
$$

Units of Young modulus: F/m²
Shearing:

$$
\begin{array}{ll}
\text { Stress }=\frac{F}{A} & \begin{array}{l}
\text { (F = force in the plane of the } \frac{F}{A}=G \frac{\Delta x}{L} \\
\text { area A) }
\end{array} \\
\text { Strain }=\frac{\Delta x}{L} & \text { (fractional change in length of the specimen) }
\end{array}
$$

Stress = (Shear modulus) x Strain

Hydraulic stress:

$$
\text { Stress }=\text { Fluid pressure }=p=\frac{F}{A} \quad p=B \frac{\Delta V}{V}
$$

Hydraulic Stress = (Bulk modulus) x Hydraulic compression

$$
\text { Strain }=\frac{\Delta V}{V}
$$

