PHY 2048-S4, Fall 2009

Examination #3 November 19, 2009 Instructor: Beatriz Roldan Cuenya

Name	ID
	ID

Please answer all questions.

#1	 	
#2	 	
#3	 	
#4	 	

Total: _____

Show all work and enter answers in boxes, if provided.

- 1. Two particles of masses $m_1 = 3$ kg and $m_2 = 0.5$ kg slide in opposite directions over a frictionless surface with constant velocities $v_1 = 1.5$ m/s and $v_2 = -5$ m/s, respectively. The particles collide and bounce as it is indicated in the figure below. If the magnitude of the velocity of particle 1 after the collision is 0.4 m/s, determine:
 - (a) Velocity (magnitude and direction) of particle 2 after colliding with particle 1. (10 points)
 - (b) Kinetic energy lost during the collision. (10 points)

(a)	(b)

2. (a) The angular speed of a point on the rim of a rotating wheel is given by: $\omega = bt - ct^2$, where t is in seconds, $b= 2 \text{ rad/s}^2$ and $c= 5 \text{ rad/s}^3$. Find an expression for the angular acceleration as a function of time. Assume that $\omega=0$ rad/s at t=0 s. (5 points)

(b) The figure below shows a rigid structure consisting of a circular hoop of radius R and mass "m" and a square made of four thin bars, each of length R and mass "m". The rigid structure rotates at a constant speed about a perpendicular axis at the location shown. Assuming R = 0.2 m and m = 3 kg. Calculate the structure's rotational inertia about the common axis of rotation. The moment of inertia of the hoop about its COM is $I_{hoop} = mR^2$. The moment of inertia of a thin rod about an axis through its COM perpendicular to its length is $I_{rod} = 1/12 \text{ m L}^2$)

(a) (b)

3. Two blocks, $m_1 = 0.2$ kg and $m_2 = 7$ kg are connected by a massless string through a pulley of mass M. The rotational inertia of the pulley is $I = \frac{1}{2} MR^2$, with M = 0.3 kg and a radius R= 0.2 m. Block m_2 is pulled rightward by applying a force of 100 N.

- (a) Write down, using symbols, the equations of motion of the masses and the pulley. (5 *points*)
- (b) Obtain the acceleration of the masses (the same for both masses). (7.5 points)
- (c) Calculate the forces of tension in the two sides of the pulley. (7.5 points)

(b) a =	(c) $T_1 =$
	$T_2 =$

4. A uniform circular platform of mass M = 40 kg and radius R = 3 m rotates in a horizontal plane about a vertical axis through its center at 50 rad/s. The moment of inertia of the platform is $\frac{1}{2}$ M R². A 8 kg wad of wet putty drops at negligible speed (v₀=0) onto the platform hitting it at a point 2.5 m from the platform's center and then sticking to it.

- (a) What is the angular velocity of the platform-putty system immediately after the impact? (10 points)
- (b) If the platform's rotational axis was located 0.3 m away from its geometrical center, what will be the angular velocity of the system after the impact? (7.5 points)

(a)	(b)

Formula sheet

PHY 2048

 $s = \theta \cdot r$ $\vec{v} = \vec{v}_0 + \vec{a}t$ U(y) = mgy $\omega = \omega_0 + \alpha \cdot t$ $\vec{r} = \vec{r}_0 + \vec{v}_0 t + 0.5 \vec{a} t^2$ $U(x) = \frac{1}{2}kx^{2}$ $a_t = \alpha \cdot r$ $v^2 = v_0^2 + 2a(x - x_0)$ $\vec{p} = m \vec{v}$ $v = \omega \cdot r$ $\vec{F} = m \cdot \vec{a}$ $\vec{F}_{ext} = \frac{d\vec{p}}{dt}$ $I = I_{COM} + Mh^2$ $F_s = -kx$ $a_r = \frac{v^2}{r} = r\omega^2$ $\vec{F}_{ext} = M \vec{a}_{COM}$ $a_c = \frac{v^2}{r}$ $\vec{a}_{COM} = \frac{d^2 \vec{R}_{COM}}{dt^2}$ $I_{disk}(COM) = \frac{1}{2}mR^2 = I_{cylinder}(COM)$ $E_{mec} = K + U$ $I_{ring}(COM) = mR^2$ $\vec{R}_{COM} = \frac{1}{M_{i}} \sum_{i} m_{i} \vec{r}_{i}$ $W = \vec{F} \cdot \vec{d}$ $I_{rod}(COM) = \frac{1}{12}ML^2$ $\vec{R}_{COM} = \frac{1}{M_{int}} \int_{V} \vec{r} \, dm$ $W = \int_{-\infty}^{x^2} F(x) dx$ $I_{sphere}(COM) = \frac{2}{5}mR^2$ $\tau = I\alpha = r_{\perp}F = rF_{\perp}$ $W_{net} = \Delta K$ $I_m = md^2$ $\vec{\tau} = \vec{r} \times \vec{F}$ $W_{net} = -\Delta U$ $Rv_{rel} = Ma$ $K_{rot} = \frac{1}{2} I \omega^2$ $F = -\frac{dU(x)}{dx}$ $v_f - v_i = v_{rel} \ln \frac{M_i}{M_c}$ $K_{tot} = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$ $\Delta E = \Delta K + \Delta U$ $L = I \cdot \omega$ $\Delta E = \Delta K + \Delta U + \Delta E_{th}$ $I = \sum_{i} m_{i} r^{2}$ $\vec{L} = \vec{r} \times \vec{p}$ $\Delta E_{th} = f_k d$ $I = \int r^2 dm$ $\vec{\tau}_{ext} = \frac{d\hat{L}}{L}$ $K = \frac{1}{2}mv^2$

MIDTERM 3 $V_{iix} = 1.5 m/s$ $V_{ig} = 0.4 m/s$ 1) m1 = 3kg $m_1 = 3.9 \qquad V_{1ix} = 1.5 m_{1s} \qquad V_{1g} = 2.5 m_{1s} \qquad V_{2g} = 2.5 m_{1s} \qquad V_{2g}$ Vifx=Vifc835° Vilg= Vig Sch 35° V2 fy ... a) Panserenhou Pi = PP X-AXIS: m, VIX; - m2 V2Xi = m, Vigx + m2 V2gx (1) (3) (1.5 m/s) - (0.5) (5m/s) = (3) ($\frac{0.4ms}{V_{1}p}$ (35) + (0.5)) $\frac{1}{V_{2}f}$ -> V2fx = 2.03 m/s] = V2f cos Q Y-AAS: O = mivify - mavafy => O = (3/5)(0.4m/s)(Sin 35°) - (0.5) (2) = [V28 y = 1.376 m/s] = V28 sin 9 V2f = V V2gx + V2gy = [2.453 m/s $\tan \theta = \frac{\sqrt{28y}}{\sqrt{28y}} \gg \left| \theta = 34.1^{\circ} \right|$ (b) $\Delta K = Kg - Ki = \pm m_V ig^2 + \pm m_V V_2 g^2 - \pm m_V V_1 i - \pm m_V V_2 i^2$ $\Delta K = \frac{1}{2} (3Kg) (0.4 m/s)^2 + \frac{1}{2} (0.5Kg) (V_2 g^2 - \frac{1}{2} (3Kg) (1.5m/s)^2 - \frac{1}{2} (m_1^2 Sm/s)^2$

DK=-7.95]

(2) (a)
$$w = bt - ct^{2} = zt - 5t^{2}$$

 $x = dw = b - 2ct = [z - 10t]$
(b) $R = 0.2m$
 $m = 3kg$
 $L = R^{10}$
 $T_{p}Comp = T_{hop} + T + T_{2p} + T_{2p}$
 $T_{p} = T_{hop} + T_{p} + T_{2p} + T_{2p}$
 $T_{p} = T_{cont} + m \cdot d_{h}^{2} = mR^{2} + m \cdot R^{2} = 2mR^{2}$
 $T_{1p} = T_{cont} + m \cdot d_{h}^{2} = mR^{2} + m \cdot R^{2} = 12mR^{2}$
 $T_{4p} = \frac{1}{12}MR^{2}$
 $T_{4p} = \frac{1}{12}MR^{2}$
 $T_{4p} = \frac{1}{12}MR^{2}$
 $T_{4p} = \frac{1}{12}MR^{2}$
 $T_{4p} = T_{cont} + m \cdot d_{2}^{2} = \frac{1}{12}MR^{2} + m \cdot \frac{2^{2}}{2}$
 $T_{4p} = T_{cont} + m \cdot d_{2}^{2} = \frac{1}{2}MR^{2} + m \cdot \frac{2^{2}}{2}$
 $T_{4} = 2mR^{2} + \frac{1}{12}mR^{2} + mR^{2} + \frac{1}{12}mR^{2} + \frac{2}{12}mR^{2} + mR^{2}$
 $T_{5} = T_{3} = Tcont + m \cdot d_{2}^{2} = \frac{1}{3}mR^{2} + \frac{2}{12}mR^{2} + mR^{2}$