PHY 2048-S4, Fall 2009

Examination \#2
October 20, 2009
Instructor: Beatriz Roldan Cuenya

Name
ID

Please answer all questions.
\qquad
\#1 \#2
\#3
\#4

Total: \qquad

Show all work and enter answers in boxes, if provided.

1. A 0.2 kg block slides along an incline plane with coefficient of kinetic friction $\mu_{\mathrm{k}}=0.2$.
(a) What should be the minimum angle of the incline in order to have the block slipping down?
(b) If the angle of the incline plane is 30°, calculate the work done by the frictional force when the block slides down the incline a distance of 3 m .
(c) What is the work done by the gravitational force during the 3-m downward displacement?
(d) What is the minimum external force parallel to the surface of the incline plane that will start the block moving up the incline? Assume a 30° incline plane.

(a)	(b)	(c)	(d)

2. The figure below shows a block of mass $\mathrm{M}_{2}=4 \mathrm{~kg}$ on a frictionless plane inclined at angle $\theta=40^{\circ}$. It is connected by a cord of negligible mass to a block of mass $M_{1}=1$ kg on a horizontal frictionless surface. The pulley is frictionless and massless. Calculate:
(a) Magnitude of the normal forces on each block.
(b) Acceleration of the boxes.
(c) Tension in the connecting cord.

3. A 1.5 kg stone attached to the end of a non-elastic cord describes a vertical circular trajectory of 2 m radius. When the stone is at its highest point, the tension in the cord T_{B} $=20 \mathrm{~N}$. Calculate: (Use Newton second law and energetic considerations).
(a) Magnitude of the stone's velocity at B
(b) Magnitude of the stone's velocity at A
(c) Tension on the cord at A.

(a)	(b)	(c)

4. A block is released from rest at height $\mathrm{h}=2 \mathrm{~m}$ and slides down a frictionless ramp onto a plateau, which has a length $\mathrm{d}=7 \mathrm{~m}$ and where the coefficient of kinetic friction is 0.4 .
(a)What is the block's speed at the end of the incline plane (B)?
(b)Can the block reach the plateau's end (C)? If the block cannot reach C, how far from B will it stop? If it does, how far up the incline plane will it travel?

(a)
(b)

Formula sheet

PHY 2048

$$
\begin{aligned}
& \vec{v}=\vec{v}_{0}+\vec{a} t \\
& \vec{p}=m \vec{v} \\
& \vec{r}=\vec{r}_{0}+\vec{v}_{0} t+0.5 \vec{a} t^{2} \\
& \vec{F}_{e x t}=\frac{d \vec{p}}{d t} \\
& \vec{F}_{e x t}=M \vec{a}_{\text {COM }} \\
& I=I_{\text {COM }}+M h^{2} \\
& a_{r}=\frac{v^{2}}{r}=r \omega^{2} \\
& I_{\text {disk }}=\frac{1}{2} m R^{2}=I_{\text {cylinder }} \\
& I_{\text {ring }}=m R^{2} \\
& \vec{a}_{\text {COM }}=\frac{d^{2} \vec{R}_{\text {COM }}}{d t^{2}} \\
& a_{c}=\frac{v^{2}}{r} \\
& \vec{R}_{\text {COM }}=\frac{1}{M_{\text {tot }}} \sum_{i} m_{i} \vec{r}_{i} \\
& I_{\text {sphere }}=\frac{2}{5} m R^{2} \\
& F_{s}=-k x \\
& E_{\text {mec }}=K+U \\
& \vec{R}_{\text {COM }}=\frac{1}{M_{\text {tot }}} \int_{V} \vec{r} d m \\
& v_{f}-v_{i}=v_{\text {rel }} \ln \frac{M_{i}}{M_{f}} \\
& W_{n e t}=\Delta K \\
& \tau=I \alpha=r_{\perp} F=r F_{\perp} \\
& W_{n e t}=-\Delta U \\
& s=\theta \cdot r \\
& \Delta E=\Delta K+\Delta U \\
& \omega=\omega_{0}+\alpha \cdot t \\
& \Delta E=\Delta K+\Delta U+\Delta E_{t h} \\
& a_{t}=\alpha \cdot r \\
& \Delta E_{t h}=f_{k} d \\
& K_{\text {rot }}=\frac{1}{2} I \omega^{2} \\
& U(y)=m g y \\
& U(x)=\frac{1}{2} k x^{2} \\
& K_{t o t}=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2} \\
& K=\frac{1}{2} m v^{2} \\
& I=\sum_{i} m_{i} r^{2} \\
& I=\int r^{2} d m
\end{aligned}
$$

MIDTERM 2-PHYZO48
$1 \quad m=0.2 \mathrm{~kg}$

$$
\begin{aligned}
& \mu_{k}=0_{0} 2 \\
& f_{k}=\mu_{k} \cdot N=\mu_{k} m g \cos \theta
\end{aligned}
$$

(a)

$$
\begin{aligned}
& \sum_{i} F_{i}=m \text { gk }=m g \sin \theta-f_{k} \\
& 0=n g \sin \theta-\mu_{k} \text { mgcos} \theta \\
& \sin \theta=\mu_{k} \cdot \cos \theta \Rightarrow \tan \theta=\mu_{k}=0.2 \rightarrow \theta_{\text {min }}^{\theta}=11.3^{\circ}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& W_{g}=\overrightarrow{f_{k}} \cdot \vec{d}=f_{k} \cdot d \cos 180^{\circ} \\
& \left.W_{g_{k}}=-\mu_{k} m g \cos \theta d=-10.2\right)(0.2)(9.8 \mathrm{~m})^{\circ} \\
& \cdot \cos 30^{\circ} \cdot(3 \mathrm{~m})^{2} \\
& W_{g_{k}}=-1.02 \mathrm{~J} \\
& (c) W_{m g}=+m g \sin \theta \cdot d=2.94 \mathrm{~J} \\
& \text { (d) } F-f_{k}=m \cdot a \\
& F-\mu_{k} m g \cos 30^{\circ}=m g \sin 30^{\circ}=m \cdot \alpha^{\circ} \\
& F=\mu_{k} m g \cos 30^{\circ}+m g \sin 30^{\circ}=1.32 \mathrm{~N}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& M_{2}=4 \mathrm{~kg} \\
& M_{1}=1 \mathrm{~kg}
\end{aligned}
$$

No fuiction
(a)
(1)

$$
\begin{aligned}
& T=M_{1} \cdot a=1 k_{g} \cdot a=5 \mathrm{~N} m_{1 g} \\
& N_{1}=m_{1} g=(1 / g)(9.8 \mathrm{~m})=9.8 \mathrm{~N}
\end{aligned}
$$

(2)

$$
\begin{gather*}
T=a \quad \text { (1) } \tag{1}\\
+25.2-X=4 a \tag{2}\\
\hline 25.2=5 a \rightarrow a=5 \mathrm{~m} / \mathrm{s}^{2}
\end{gather*}
$$

(3)

$$
\begin{align*}
& m=1.5 \mathrm{~kg} \\
& R=2 \mathrm{~m} \\
& F_{C}=m \frac{V_{B}^{2}}{R}=T_{B}+m g \tag{1}\\
& F_{C}=m \frac{V_{A}^{2}}{R}=T_{A}-m g \tag{2}
\end{align*}
$$

(1) $0.75 V_{B}^{2}=20+14.7=34.7 \rightarrow V_{B}=\sqrt{\frac{34.7}{0.75}}=\sqrt{6.8 \frac{\mathrm{~m}}{\mathrm{~s}}}$
(1) $0.75 V_{B}^{2}=20+14.7$
(2) $0.75 V_{A}^{2}=T_{A}-14.7$

(3)

$$
\begin{aligned}
& \Delta E=0=\Delta K+\Delta L=K_{B}-K_{A}+U_{B}-X_{A} \\
& O=\frac{1}{2} m\left(V_{B}^{2}-V_{A}^{2}\right)+m g 2 R
\end{aligned}
$$

(3) $O=0.75\left(V_{B}^{2}-0.75 V_{A}^{2}+58.8 \rightarrow 0=93.5-0.75 V_{A}^{2}\right.$
(2) $0.75 V_{A}^{2}=T_{A}-14.7$

$$
V_{A}=\sqrt{\frac{93.5}{0.75}}
$$

(2) $T_{A}=14.7+0.75 V_{A}^{2}=14.7+0.75(11.16)^{2}=108.2 \mathrm{~N}=11.16 \mathrm{mid}$
(4) $\mu_{k}=0.4$

(a)

$$
\begin{align*}
& \quad V_{B} \text { ? } \quad d=7 \mathrm{~m} \\
& \text { (a) } \Delta E=0=\Delta K+\Delta U_{g} \quad \\
& \text { ALB } \quad 0=K_{B}-K_{A}+L / B-L_{A} \rightarrow K_{B}=L_{A} \\
& \quad \frac{1}{2} \phi V_{B}^{2}=\operatorname{ligh} \Rightarrow V_{B}=\sqrt{2 g h}=6.26 \mathrm{~m} / \mathrm{s}
\end{align*}
$$

(b) Does block reach C? NO

Let's assume पES \Rightarrow See how far the block can travel an region with friction. If $L>d \Rightarrow$ yes, bock reach C

$$
\begin{aligned}
& \Delta t=0=\Delta k+\Delta L_{g}+\Delta E_{t h} \\
& O=K_{D}-K_{B}+\mu_{B}+f_{k} \cdot L \quad \Rightarrow K_{B}=f_{k} \cdot L=\mu_{k} \cdot m g L \\
& \frac{K_{B}}{m}=\frac{1}{2} m v_{B}^{2}=\mu_{k} m g L \Rightarrow 19.59=3.92 \mathrm{~L} \Rightarrow L \approx 5 \mathrm{~m}
\end{aligned}
$$

Max distance the bock can twa \Rightarrow Block does not sole it to \subseteq

