PHY 2048-S4, Fall 2009

Examination \#1
September 24, 2009
Instructor: Beatriz Roldan Cuenya

Name
ID

Please answer all questions.

```
#1
#2
#3
#4
#5
```

\qquad

Total: \qquad

Show all work and enter answers in boxes, if provided.

1. An object moves along the x -axis according to the equation:
$\mathrm{x}(\mathrm{t})=\left(2 \mathrm{t}^{2}+\mathrm{t}-1\right) \mathrm{m}$, where t is in seconds. Determine: (20 points)
(a) the average speed between $\mathrm{t}=1 \mathrm{~s}$ and $\mathrm{t}=4 \mathrm{~s}$,
(b) the instantaneous speed at $t=3 \mathrm{~s}$
(c) the average acceleration between $\mathrm{t}=1 \mathrm{~s}$ and $\mathrm{t}=4 \mathrm{~s}$,
(d) the instantaneous acceleration at $\mathrm{t}=3 \mathrm{~s}$

(a) $\mathrm{V}_{\text {avg }}=$	m/s	(b) $\mathrm{v}=$	m / s	(c) $\mathrm{a}_{\text {avg }}=$	$\mathrm{m} / \mathrm{s}^{2}$	(d) $\mathrm{v}_{\text {avg }}=$	$\mathrm{m} / \mathrm{s}^{2}$

2. A car (initially at rest) starts moving with a constant acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ until it reaches a speed of $8 \mathrm{~m} / \mathrm{s}$. He then keeps that speed constant for some time. If the total distance traveled is 250 m , how much time does it take for the total trip of the car? (20 points)
\square
$\mathrm{t}=$
3. A particle undergoes three consecutive displacements: (20 points)
$\overrightarrow{\Delta r_{1}}=(10 \hat{i}-2 \hat{j}) m$
$\overrightarrow{\Delta r_{2}}=(13 \hat{i}+11 \hat{j}) m$
$\overrightarrow{\Delta r_{3}}=(-9 \hat{i}+5 \hat{j}) m$
(a) Find the components of the resultant displacement.
(b) Find the magnitude and the direction (angle) of the resultant displacement.

(a) $\overrightarrow{\Delta r}=$	(b) $\Delta \mathrm{r}=$

4. A football player kicks a ball from a point at ground level located 30 m horizontally away from the goal, and he tries to hit the crossbar which is 4 m high. When kicked, the ball leaves the ground at an angle of 47° to the horizontal. What initial speed must the football have in order to hit the crossbar? (Neglect air friction). (20 points)
$\mathrm{V}_{0}=\mathrm{m} / \mathrm{s}$
 moves with a constant acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$. The coefficient of kinetic friction between the object and the incline is 0.2 , and the angle θ of the incline is 28°. (20 points)
(a) Calculate the magnitude of the force F .
(b) Calculate the magnitude of the normal force and indicate its direction in the figure below.

(a) $\mathrm{F}=$	N	(b) $\mathrm{N}=$
N		

$$
\begin{aligned}
& \vec{v}=\vec{v}_{0}+\vec{a} t \\
& \vec{p}=m \vec{v} \\
& \vec{r}=\vec{r}_{0}+\vec{v}_{0} t+0.5 \vec{a} t^{2} \\
& \vec{F}_{e x t}=\frac{d \vec{p}}{d t} \\
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \\
& \vec{F}_{e x t}=M \vec{a}_{C O M} \\
& \vec{F}=m \cdot \vec{a} \\
& F_{s}=-k x \\
& a_{c}=\frac{v^{2}}{r} \\
& E_{\text {mec }}=K+U \\
& \vec{R}_{\text {COM }}=\frac{1}{M_{\text {tot }}} \int_{V} \vec{r} d m \\
& W_{\text {net }}=\Delta K \\
& W_{n e t}=-\Delta U \\
& s=\theta \cdot r \\
& \Delta E=\Delta K+\Delta U \\
& \omega=\omega_{0}+\alpha \cdot t \\
& \Delta E=\Delta K+\Delta U+\Delta E_{t h} \\
& a_{t}=\alpha \cdot r \\
& \Delta E_{t h}=f_{k} d \\
& K_{r o t}=\frac{1}{2} I \omega^{2} \\
& U(y)=m g y \\
& U(x)=\frac{1}{2} k x^{2} \\
& K_{t o t}=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2} \\
& I=\sum_{i} m_{i} r^{2} \\
& K=\frac{1}{2} m v^{2} \\
& I=I_{\text {COM }}+M h^{2} \\
& a_{r}=\frac{v^{2}}{r}=r \omega^{2} \\
& I_{\text {disk }}=\frac{1}{2} m R^{2}=I_{\text {cylinder }} \\
& I_{\text {ring }}=m R^{2} \\
& I_{\text {sphere }}=\frac{2}{5} m R^{2} \\
& \vec{R}_{\text {COM }}=\frac{1}{M_{\text {tot }}} \sum_{i} m_{i} \vec{r}_{i} \quad R v_{\text {rel }}=M a \\
& v_{f}-v_{i}=v_{r e l} \ln \frac{M_{i}}{M_{f}}
\end{aligned}
$$

MIDTERM 1
(1) $x(t)=2 t^{2}+t-1$
(a)

$$
\begin{aligned}
& V_{\text {aug }}=\frac{x(4)-x(1)}{4-1}=\frac{35 m-2 m}{35}=\frac{33 \mathrm{~m}}{35}= \\
& x(4)=32+4-1=35 \mathrm{~m} \\
& x(1)=2+1-1=2 \mathrm{~m}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& v=\frac{d x}{d t}=4 t+1 \\
& V(3)=12+1=13 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } a_{\text {avg }}=\frac{V(4)-V(1)}{4-1}=\frac{17-5 \mathrm{~m} / \mathrm{s}}{3 \mathrm{~s}}=4 \mathrm{~m}_{\mathrm{s}} \\
& V(4)=4 * 4+1=17 \\
& V(1)=5
\end{aligned}
$$

(d) $a=\frac{d u}{d t}=\frac{d x^{2}}{d t^{2}}=4 \mathrm{~m} / \mathrm{s}^{2}$
(2)

$$
t_{T}=t_{1}+t_{2} \rightarrow t_{2}
$$

(1) $x_{1}-\psi_{0}=\frac{1}{2} a_{1} t_{1}^{2} \rightarrow x_{1}=\frac{1}{2}\left(2 \frac{m}{s^{2}}\right) \cdot t_{1}^{2}=t_{1}^{2}$
(2) $x_{2}-x_{1}=v_{1} \cdot t_{2} \rightarrow 250-x_{1}=8 \cdot t_{2}$
(2) $250-t_{1}^{2}=8 t_{2}$
(3)

$$
\begin{aligned}
a_{1}=\frac{v_{1}-v_{6}}{t_{1}} \Rightarrow & v_{1}=a_{1} \cdot t_{1}=\left(2 m^{2}\right) \cdot t_{1}=8 \mathrm{~m}_{1} \mathrm{~s} \\
& \Rightarrow t_{1}=\frac{v_{1}}{a_{1}}=\frac{8 \mathrm{~m}_{1} / 8}{2 m_{1} \mathrm{~s}^{2}}=45
\end{aligned}
$$

(1) $x_{1}=t_{1}^{2}=16 \mathrm{~m}$
(2) $t_{\infty}=\frac{250-x_{1}}{8}=\frac{250^{m}-16 \mathrm{mh}}{8 \mathrm{~m} / \mathrm{s}}=29.25 \mathrm{~s}$

$$
G_{T}=29.255+4 \mathrm{~S}=33.255
$$

(3)

$$
\left.\begin{array}{l}
\overrightarrow{\Delta r_{1}}=10 \hat{\imath}-2 \hat{\gamma} \\
\vec{\Delta} r_{2}=13 \hat{\imath}+11 \hat{\jmath} \\
\Delta \vec{r}_{3}=-9 \hat{\imath}+5 \hat{\jmath}
\end{array}\right\}
$$

(a) $\overrightarrow{\Delta r}_{T}=14 \hat{\imath}+14 \hat{\jmath}$
(b) $|\vec{r}|=\sqrt{14^{2}+14^{2}}=19.80 \mathrm{~m}$
(c) $\tan \theta=\frac{14}{14} \rightarrow \theta=45^{\circ}$

$$
\left.\begin{array}{l}
x-x_{0}=\left(v_{0} \cos 47^{\circ}\right) \cdot t \\
y-y_{0}=\left(v_{0} \sin 47^{\circ}\right) t-\frac{1}{2} g t^{2}
\end{array}\right\}
$$

$$
\left.\begin{array}{rl}
30 m & =0.682 V_{0} \cdot t \quad \\
4 m & =V_{0}(0.731) t-4.9 t^{2}
\end{array}\right\} V_{0}=\frac{44}{t}=18.35 \mathrm{~m} / \mathrm{s}
$$

$$
4=\left(\frac{44}{t}\right) \cdot t(0.731)-4.9 t^{2} \rightarrow 4=32.16-4.9 t^{2}
$$

$$
t=2.397 \mathrm{~s}
$$

(5)

$$
\begin{aligned}
& m=2 \mathrm{~kg} \\
& a=3 \mathrm{~m} / \mathrm{s}^{2} \\
& \mu_{k}=0.2
\end{aligned}
$$

a) F ?
b) N ?

$$
\delta_{k}=\mu_{k} \cdot N=\mu_{k} \cdot m g \cos 28^{\circ}=(0.2)(2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \cdot \cos 28^{\circ}=3.46 \mathrm{~N}
$$

(a) $F-m g \sin 28^{\circ}-f_{k}=m a$

$$
F-3.46 \mathrm{~N}-9.20 \mathrm{~N}=2 a=6 \mathrm{~N} \Rightarrow F=18.66 \mathrm{~N}
$$

(b) $N=m g \cos 28^{\circ}=17.3 \mathrm{~N}$

