Chapter 21 - Solutions of even suggested problems

(40) (a) $\mathrm{T}=382 \mathrm{~N}$
(b) $\mathrm{T}=2.02 \times 10^{3} \mathrm{~N}$
(56) (a) $\mathrm{E}_{\mathrm{x}}=1.14 \times 10^{5} \mathrm{~N} / \mathrm{C}$
(b) $\mathrm{E}=8.92 \times 10^{4} \mathrm{~N} / \mathrm{C}$
(c) $\mathrm{E}=1.46 \times 10^{5} \mathrm{~N} / \mathrm{C}$
(66) $F=6.58 \times 10^{-13} \mathrm{~N}$
(78) $\mathrm{q}_{2}=-\mathrm{q}_{1}=-6.17 \times 10^{-8} \mathrm{C}$
(84) (a) force on the left ball positive
(b) $\theta=2 \arctan (\mathrm{qE} / \mathrm{mg})$
(c) $\theta=180^{\circ}$
(90) (a)

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{x}}=\frac{Q}{4 \pi \epsilon_{0} x} \frac{1}{\sqrt{x^{2}+a^{2}}} \\
& \mathrm{E}_{\mathrm{y}}=-\frac{Q}{4 \pi \epsilon_{0} a}\left(\frac{1}{x}-\frac{1}{\sqrt{x^{2}+a^{2}}}\right)
\end{aligned}
$$

(b) $F x=-q E_{x} \quad ; \quad F y=-q E_{y}$
(c) $F_{x} \approx-\frac{q Q}{4 \pi \epsilon_{0} x^{2}}, F_{y} \approx \frac{q Q}{4 \pi \epsilon_{0} a}\left(\frac{1}{x}-\frac{1}{x}+\frac{a^{2}}{2 x^{3}}\right)=\frac{q Q a}{8 \pi \epsilon_{0} x^{3}}$
(104) (a) $Q=A \sigma=\pi\left(R_{2}^{2}-R_{1}^{2}\right) \sigma$
(b) $\overrightarrow{\boldsymbol{E}}(x)=\frac{-\sigma}{2 \epsilon_{0}}\left(1 / \sqrt{\left(R_{1} / x\right)^{2}+1}-1 / \sqrt{\left(R_{2} / x\right)^{2}+1}\right) \frac{|x|}{x} \hat{\boldsymbol{i}}$
(c) $\overrightarrow{\boldsymbol{E}}(x)=\frac{\sigma}{2 \epsilon_{0}}\left(\frac{x}{R_{1}}-\frac{x}{R_{2}}\right) \frac{|x|^{2}}{x} \hat{\boldsymbol{i}}=\frac{\sigma}{2 \epsilon_{0}}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) x \hat{\boldsymbol{i}}$.
(d)

$$
f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}=\frac{1}{2 \pi} \sqrt{\frac{q \sigma}{2 \epsilon_{0} m}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)}
$$

