Chapter 26 – Direct-Current and Circuits

- Resistors in Series and Parallel
- Kirchhoff's Rules
- Electric Measuring Instruments
- R-C Circuits

1. Resistors in Series and Parallel

Resistors in Series:

$$V_{ax} = I R_1$$
 $V_{xy} = I R_2$ $V_{yb} = I R_3$
 $V_{ab} = V_{ax} + V_{xy} + V_{yb} = I (R_1 + R_2 + R_3)$

$$V_{ab}/I = R_1 + R_2 + R_3 = R_{eq}$$

$$R_{eq} = R_1 + R_2 + R_3 + \dots$$

Resistors in Parallel:

$$\mathbf{I}_1 = \mathbf{V}_{ab}/\mathbf{R}_1 \qquad \mathbf{I}_2 = \mathbf{V}_{ab}/\mathbf{R}_2 \qquad \mathbf{I}_3 = \mathbf{V}_{ab}/\mathbf{R}_3$$

$$I = I_1 + I_2 + I_3 = V_{ab} (1/R_1 + 1/R_2 + 1/R_3) \rightarrow I/V_{ab} = 1/R_{eq}$$

(c) R_1 in series with parallel combination of R_2 and R_3

(d) R_1 in parallel with series combination of R_2 and R_3

2. Kirchhoff's Rules

Junction: point where three or more conductors meet (nodes, branch points). Loop: closed conducting path.

Kirchhoff's junction rule: the algebraic sum of the currents into any junction is zero. Junction $\Sigma I =$ $I_1 \rightarrow$ I_2 (a) Junction Loop 1 a >(1)a (2) R_2 R r_1 r_2 Loop 3 Loop 2 \mathcal{E}_1 \mathcal{E}_{2} κ_m-E Not a Junction Not a junction junction

-The junction rule is based on conservation of electric charge. No charge can accumulate at a junction \rightarrow total charge entering the junction per unit time = total charge leaving.

Kirchhoff's loop rule: the algebraic sum of the potential difference in any loop, Including those associated with emfs and those of resistive elements, must equal zero.

= 0 (electrostatic force is conservative)

Sign Conventions for Loop Rule:

```
emf source (\epsilon) \rightarrow positive (travel from – to +)
negative (travel from + to -)
```

resistor (IR) \rightarrow negative (travel in same direction as I \rightarrow decreasing V) positive (travel in contrary direction to I \rightarrow increasing V)

- "Travel" is the direction that we imagine going around the loop, not necessarily the direction of the current.

(a) Sign conventions for emfs

(b) Sign conventions for resistors

3. Electrical Measuring Instruments

d'Arsonval galvanometer (meter):

Coil of wire mounted next to a permanent magnet. Attached to the coil is a spring. Any current passing through the coil will induce magnetism in the coil (magnetic field exerts a torque on the coil ~ current). When the coil turns, spring makes restoring torque ~ angular displacement ~ current.

- I_{fs} = current full scale (coil)
- R_c = resistance of coil

 It can be adapted to measure currents larger than its full scale range by connecting R_{sh} (shunt resistor) in parallel (some I bypasses meter coil).

Ammeter: device that measures current, R = 0

 I_{fs} = current through coil I_{sh} = current through R_{sh} I_{a} = current measured by ammeter

$$V_{ab} = I_{fs}R_c = I_{sh} R_{sh} = (I_a - I_{fs}) R_{sh}$$

Voltmeter: device that measures voltage, $R = \infty$

- It can be adapted to measure voltages larger than its full scale range by connecting $\rm R_s$ in series with the coil .

$$V_v = V_{ab} = I_{fs}(R_c + R_s)$$

 $\mathbf{I}_{a} = \mathbf{I}_{sh} + \mathbf{I}_{fs}$

Ohmeter: device that measures resistance.

- The series resistance R_s is adjusted so that when the terminals x-y are short-circuited (R = 0), the meter deflects full scale (zero). When nothing is connected between x-y (open circuit, R = ∞) there is no current (no deflection). For intermediate R values, meter scale is calibrated to read R.

Potenciometer: device that measures emf of a source without drawing any current from it.

- R_{ab} connected to terminals of known emf (ϵ_1). A sliding contact (c) is connected through galvanometer (G) to unknown source (ϵ_2). As contact (c) is moved along R_{ab} , R_{cb} varies proportional to wire length (c-b). To find ϵ_2 (c) is moved until G shows no deflection ($I_G = 0$): $\epsilon = I R_{cb}$ 1111

- G calibrated by replacing ϵ_2 by source of known emf.

4. <u>R-C Circuits</u>

- Capital letters: V, Q, I (constant)
- Lowercase letters: v, i, q (varying)

Charging a Capacitor:

$$t = 0 \rightarrow q = 0 \rightarrow v_{bc} = 0 \rightarrow I_0 = v_{ab} / R = \mathcal{E} / R$$

$$t = t_f \rightarrow I = 0 \rightarrow v_{ab} = 0 \rightarrow v_{bc} = \epsilon = Q_f/C$$

At an intermediate time, t:

$$\mathcal{E} = v_{ab} + v_{bc}$$
$$v_{ab} = iR \qquad v_{bc} = \frac{q}{C}$$

$$\mathcal{E} - iR - \frac{q}{C} = 0$$

$$i = \frac{\mathcal{E}}{R} - \frac{q}{RC}$$
 At $t = t_f \Rightarrow i = 0 \Rightarrow \frac{\mathcal{E}}{R} = \frac{Q_f}{RC}$ $Q_f = RC$

(b) Charging the capacitor

Charging a Capacitor:

$$i = \frac{dq}{dt} = \frac{\varepsilon}{R} - \frac{q}{RC} = -\frac{1}{RC}(q - C\varepsilon)$$
$$\frac{dq}{q - C\varepsilon} = -\frac{dt}{RC}$$

$$\int_{0}^{q} \frac{dq'}{q' - C\varepsilon} = -\int_{0}^{t} \frac{dt'}{RC}$$

(solve by changing variable $x = q' - C\epsilon$)

(b) Graph of capacitor charge versus time for a charging capacitor

$$\ln\left(\frac{q-C\varepsilon}{-C\varepsilon}\right) = -\frac{t}{RC} \qquad \qquad \frac{q-C\varepsilon}{-C\varepsilon} = e^{-t/RC}$$

$$q = C\varepsilon \left(1 - e^{-t/RC}\right) = Q_f \left(1 - e^{-t/RC}\right)$$

$$i = \frac{dq}{dt} = \frac{\mathcal{E}}{R} e^{-t/RC} = I_0 e^{-t/RC}$$

Time Constant: relaxation time of the circuit \rightarrow time after which the current in the circuit has decreased to 1/e of I₀ and charge has reached (1-1/e) of Q_f = C ϵ .

 $\tau = RC$

- If RC small \rightarrow circuit charges quickly.

- i never becomes exactly 0, and q never becomes exactly Q_f (asymptotic behavior).

Discharging a Capacitor:

$$t = 0 \rightarrow q = Q_0$$
, $\epsilon = 0$ (capacitor discharges through R)

$$-iR - \frac{q}{C} = 0 \qquad i = \frac{dq}{dt} = -\frac{q}{RC}$$
$$\int_{Q_0}^{q} \frac{dq'}{q'} = -\frac{1}{RC} \int_{0}^{t} dt' \qquad \ln\frac{q}{Q_0} = -\frac{t}{RC}$$

Switch closed

Discharging a Capacitor:

$$q = Q_0 e^{-t/RC}$$

$$i = \frac{dq}{dt} = -\frac{Q_0}{RC}e^{-t/RC} = I_0 e^{-t/RC}$$

- During charging:

 $\mathcal{E} \cdot i = i^2 R + \frac{iq}{C}$

Instantaneous rate at which battery delivers energy to circuit

 i^2R = power dissipated in R

i q/C = power stored in C

Total energy supplied by battery: ϵQ_f Total energy stored in capacitor: $Q_f \epsilon/2$

(b) Graph of capacitor charge versus time for a discharging capacitor

