Chapter 23 - Electric Potential

- Electric Potential Energy
- Electric Potential and its Calculation
- Equipotential surfaces
- Potential Gradient

0. Review

Work: $\quad W_{a \rightarrow b}=\int_{a}^{b} \vec{F} \cdot d \vec{l}=\int_{a}^{b} F \cdot \cos \varphi \cdot d l$

Potential energy

- If the force is conservative: $W_{a \rightarrow b}=U_{a}-U_{b}=-\left(U_{b}-U_{a}\right)=-\Delta U$

Work-Energy: $\quad K_{a}+U_{a}=K_{b}+U_{b}$

The work done raising a basketball against gravity depends only on the potential energy, how high the ball goes. It does not depend on other motions. A point charge moving in a field exhibits similar behavior.

1. Electric Potential Energy

- When a charged particle moves in an electric field, the field exerts a force that can do work on the particle. The work can be expressed in terms of electric potential energy.
- Electric potential energy depends only on the position of the charged particle in the electric field.

Electric Potential Energy in a Uniform Field:

$$
W_{a \rightarrow b}=F \cdot d=q_{0} E d
$$

Electric field due to a static charge distribution generates a conservative force:

$$
W_{a \rightarrow b}=-\Delta U \rightarrow U=q_{0} E \cdot y
$$

- Test charge moving from height y_{a} to y_{b} :

$$
W_{a \rightarrow b}=-\Delta U=-\left(U_{b}-U_{a}\right)=q_{0} E\left(y_{a}-y_{b}\right)
$$

(a) Positive charge moves in the direction of $\overrightarrow{\boldsymbol{E}}$:

- Field does positive work on charge.

(b) Positive charge moves opposite $\overrightarrow{\boldsymbol{E}}$:
- Field does negative work on charge.
- U increases.

Independently of whether the test charge is (+) or (-):

- U increases if q_{0} moves in direction opposite to electric force.
- U decreases if q_{0} moves in same direction as $\vec{F}=q_{0} \vec{E}$.
(a) Negative charge moves in the direction of $\overrightarrow{\boldsymbol{E}}$:
- Field does negative work on charge.
- U increases.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
(b) Negative charge moves opposite $\overrightarrow{\boldsymbol{E}}$:

- Field does positive work on charge.
- U decreases.

Electric Potential Energy of Two Point Charges:

A test charge $\left(q_{0}\right)$ will move directly away from a like charge q.

$$
W_{a \rightarrow b}=\int_{r_{a}}^{r_{b}} F_{r} \cdot d r=\int_{r_{a}}^{r_{b}} \frac{1}{4 \pi \varepsilon_{0}} \frac{q q_{0}}{r^{2}} \cdot d r=\frac{q q_{0}}{4 \pi \varepsilon_{0}}\left(\frac{1}{r_{a}}-\frac{1}{r_{b}}\right)
$$

The work done on q_{0} by electric field does not depend on path taken, but only on distances r_{a} and r_{b} (initial and end points).

$$
W_{a \rightarrow b}=\int_{r_{a}}^{r_{b}} F \cdot \cos \varphi \cdot d l=\int_{r_{a}}^{r_{r}} \frac{1}{4 \pi \varepsilon_{0}} \frac{q q_{0}}{r^{2}} \cdot \cos \varphi \cdot d l
$$

If q_{0} moves from a to b, and then returns to a by a different path, W (round trip) $=0$

- Potential energy when charge q_{0} is at distance r from q :

$$
\begin{aligned}
& \begin{array}{l}
W_{a \rightarrow b}=\frac{q q_{0}}{4 \pi \varepsilon_{0}}\left(\frac{1}{r_{a}}-\frac{1}{r_{b}}\right)= \\
\text { (a) } q \text { and } q_{0} \text { have the same sign. }
\end{array}
\end{aligned}
$$

Graphically, U between like charges increases sharply to positive (repulsive) values as the charges become close.

$$
U=\frac{q q_{0}}{4 \pi \varepsilon_{0} r}
$$

(b) q and q_{0} have opposite signs.

Unlike charges have U becoming sharply negative as they become close (attractive).

- Potential energy is always relative to a certain reference point where $U=0$. The location of this point is arbitrary. $\mathrm{U}=0$ when q and q_{0} are infinitely apart ($r \rightarrow \infty$).
- U is a shared property of 2 charges, a consequence of the interaction between them. If distance between 2 charges is changed from r_{a} to $r_{b}, \Delta U$ is same whether q is fixed and q_{0} moved, or vice versa.

Electric Potential Energy with Several Point Charges:

The potential energy associated with q_{0} at " a " is the algebraic sum of U associated with each pair of charges.

$$
U=\frac{q_{0}}{4 \pi \varepsilon_{0}}\left(\frac{q_{1}}{r_{1}}+\frac{q_{2}}{r_{2}}+\frac{q_{3}}{r_{3}}+\right)=\frac{q_{0}}{4 \pi \varepsilon_{0}} \sum_{i} \frac{q_{i}}{r_{i}}
$$

$$
U=\frac{1}{4 \pi \varepsilon} \sum_{0} \frac{q_{i} q_{j}}{r_{i j}}
$$

2. Electric Potential

Potential energy per unit charge:

$$
V=\frac{U}{q_{0}}
$$

V is a scalar quantity
Units: Volt $(\mathrm{V})=\mathrm{J} / \mathrm{C}=\mathrm{Nm} / \mathrm{C}$

$$
\frac{W_{a \rightarrow b}}{q_{0}}=-\frac{\Delta U}{q_{0}}=-\left(\frac{U_{b}}{q_{0}}-\frac{U_{a}}{q_{0}}\right)=V_{a}-V_{b}=V_{a b} \quad \leftarrow \text { Voltage }
$$

$V_{a b}=$ work done by the electric force when a unit charge moves from a to b.

The potential of a battery can be measured between point a and point b (the positive and negative terminals).

Calculating Electric Potential:

Single point charge: $V=\frac{U}{q_{0}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}$

Collection of point charges: $\quad V=\frac{U}{q_{0}}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \frac{q_{i}}{r_{i}}$

Continuous distribution of charge: $V=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{d q}{r}$

Finding Electric Potential from Electric Field:

$$
V_{a b}=V_{a}-V_{b}=\frac{W_{a \rightarrow b}}{q_{0}}=\frac{\int_{a}^{b} \vec{F} \cdot d \vec{l}}{q_{0}}=\frac{\int_{a}^{b} q_{0} \vec{E} \cdot d \vec{l}}{q_{0}}=\int_{a}^{b} \vec{E} \cdot d \vec{l}=\int_{a}^{b} E \cos \varphi \cdot d l
$$

- Moving with the electric field $\rightarrow \mathrm{W}>0 \rightarrow \mathrm{~V}_{\mathrm{a}}>\mathrm{V}_{\mathrm{b}} \rightarrow \mathrm{V}$ decreases.
- Moving against $\mathrm{E} \rightarrow \mathrm{W}<0 \rightarrow \mathrm{~V}$ increases.
(a) A positive point charge

(b) A negative point charge

Review of units:

Electric charge: C
Electric potential energy: $\mathrm{J} \quad\left(1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}\right)$
Electric potential: $\mathrm{V}=\mathrm{J} / \mathrm{C}=\mathrm{Nm} / \mathrm{C}$
Electric field: $\mathrm{N} / \mathrm{C}=\mathrm{V} / \mathrm{m}$

3. Calculating Electric Potential

- Most problems are easier to solve using an energy approach (based on U and V) than a dynamical approach (based on E and F).

Ionization and Corona Discharge:

- There is a maximum potential to which a conductor in air can be raised. The limit is due to the ionization of air molecules that make air conducting. This occurs at $E_{m}=3 \times 10^{6} \mathrm{~V} / \mathrm{m}$ (dielectric strength of air).

Conducting sphere:

$$
V_{\text {sufface }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R} \quad E_{\text {sufface }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R^{2}}
$$

Max. potential to which a spherical conductor can be raised: $V_{m}=R E_{m}$
$E x_{1}$: if $R=1 \mathrm{~cm}, \mathrm{~V}_{\mathrm{m}}=30,000 \mathrm{~V} \rightarrow$ adding extra charge would not raise V , but would cause surrounding air to become ionized and conductive \rightarrow extra charge leaks into air.
$E x_{2}$: if R very small (sharp point, thin wire) $\rightarrow E=V / R$ will be large, even a small V will give rise to E sufficiently large to ionize air ($\mathrm{E}>\mathrm{E}_{\mathrm{m}}$). The resulting current and "glow" are called "corona".
$E x_{3}$: large R (prevent corona) \rightarrow metal ball at end of car antenna, blunt end of lightning rod. If there is excess charge in atmosphere (thunderstorm), large charge of opposite sign can buildup on blunt end \rightarrow atmospheric charge is attracted to lightning rod. A conducting wire connecting the lightning rod and ground allows charge dissipation.

4. Equipotential Surfaces

- 3D surface on which the electric potential (V) is the same at every point.
- If q_{0} is moved from point to point on an equip. surface \rightarrow electric potential energy $\left(\mathrm{q}_{0} \mathrm{~V}\right)$ is constant. U constant $\rightarrow-\Delta \mathrm{U}=\mathrm{W}=0$

$$
W_{a \rightarrow b}=\int_{a}^{b} \vec{E} \cdot d \vec{l}=\int_{a}^{b} E \cdot \cos \varphi \cdot d l=0 \rightarrow \cos \varphi=0 \rightarrow \vec{E}, \vec{F} \perp d \vec{l}
$$

- Field lines (curves) $\rightarrow \mathrm{E}$ tangent
- Equipotential surfaces (curved surfaces) \rightarrow E perpendicular
- Field lines and equipotential surfaces are mutually perpendicular.
- If electric field uniform \rightarrow field lines straight, parallel and equally spaced. equipotentials \rightarrow parallel planes perp. field lines.
- At each crossing of an equipotential and field line, the two are perpendicular.
- Important: E does not need to be constant over an equipotential surface. Only V is constant.
(a) A single positive charge
(b) An electric dipole

\rightarrow Electric field lines
- Cross sections of equipotential surfaces
(c) Two equal positive charges

- E is not constant $\rightarrow E=0$ in between the two charges (at equal distance from each one), but not elsewhere within the same equipotential surface.
\rightarrow Electric field lines
- Cross sections of equipotential surfaces

[^0]
Equipotentials and Conductors:

-When all charges are at rest, the surface of a conductor is always an equipotential surface \rightarrow E outside a conductor \perp to surface at each point

Demonstration:

$\mathrm{E}=0$ (inside conductor) $\rightarrow \mathrm{E}$ tangent to surface inside and out of conductor $=0 \rightarrow$ otherwise charges would move following rectangular path.

An impossible electric field
If the electric field just outside a conductor had a tangential component $E_{\|}$, a charge could move in a loop with net work done.

$\overrightarrow{\mathrm{E}} \perp$ to conductor surface

Equipotentials and Conductors:

- In electrostatics, if a conductor has a cavity and if no charge is present inside the cavity \rightarrow there cannot be any charge on surface of cavity.

Demonstration: (1) prove that each point in cavity must have same $V \rightarrow$ If P was at different V, one can build a equip. surface B.
(2) Choose Gaussian surface between 2 equip. surfaces $(A, B) \rightarrow E$ between those two surfaces must be from A to B (or vice versa), but flux through $\mathrm{S}_{\text {Gauss }}$ won't be zero.
(3) Gauss: charge enclosed by $\mathrm{S}_{\text {Gauss }}$ cannot be zero \rightarrow contradicts hypothesis of $\mathrm{Q}=0 \rightarrow \mathrm{~V}$ at P cannot be different from that on cavity wall (A) \rightarrow all cavity same $V \rightarrow$ E inside cavity $=0$

Cross section of equipotential

5. Potential Gradient

$$
\begin{aligned}
& V_{a}-V_{b}=\int_{a}^{b} \vec{E} \cdot d \vec{l}=-\int_{a}^{b} d V \rightarrow-d V=\vec{E} \cdot d \vec{l} \\
& -d V=E_{x} d x+E_{y} d y+E_{z} d z \\
& E_{x}=-\frac{\partial V}{\partial x} \quad E_{y}=-\frac{\partial V}{\partial y} \quad E_{z}=-\frac{\partial V}{\partial z} \\
& \vec{E}=-\left(\frac{\partial V}{\partial x} \hat{i}+\frac{\partial V}{\partial x} \hat{j}+\frac{\partial V}{\partial x} \hat{k}\right)=-\vec{\nabla} V
\end{aligned}
$$

- The potential gradient points in the direction in which V increases most rapidly with a change in position.
- At each point, the direction of \vec{E} is the direction in which V decreases most rapidly and is always perpendicular to the equipotential surface through point.
- Moving in direction of \vec{E} means moving in direction of decreasing potential.

[^0]: Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

