
s

g
tion
ring the
performed
m, based
pecified
hile the

axis
w
le values
Icarus 170 (2004) 343–364
www.elsevier.com/locate/icaru

Long term evolution and chaotic diffusion
of the insolation quantities of Mars

J. Laskara,∗, A.C.M. Correiaa,b,c, M. Gastineaua, F. Joutela, B. Levrarda, P. Robutela

a Astronomie et Systèmes Dynamiques, IMCCE-CNRS UMR8028, 77 Av. Denfert-Rochereau, 75014 Paris, France
b Observatoire de Genève, 51 chemin des Maillettes, 1290 Sauverny, Switzerland

c Departamento de Física da Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Received 21 November 2003; revised 26 March 2004

Available online 2 June 2004

Abstract

As the obliquity of Mars is strongly chaotic, it is not possible to give a solution for itsevolution over more than a few million years. Usin
the most recent data for the rotational state of Mars, and a new numericalintegration of the Solar System, we provide here a precise solu
for the evolution of Mars’ spin over 10 to 20 Myr. Over 250 Myr, we present a statistical study of its possible evolution, when conside
uncertainties in the present rotational state. Over much longer time span, reaching 5 Gyr, chaotic diffusion prevails, and we have
an extensive statistical analysis of the orbital and rotational evolution of Mars, relying on Laskar’s secular solution of the Solar Syste
on more than 600 orbital and 200,000 obliquity solutions over 5 Gyr. The density functions of the eccentricity and obliquity are s
with simple analytical formulas. We found an averaged eccentricity of Mars over 5 Gyr of 0.0690 with standard deviation 0.0299, w
averaged value of the obliquity is 37.62◦ with a standard deviation of 13.82◦, and a maximal value of 82.035◦. We find that the probability
for Mars’ obliquity to have reached more than 60◦ in the past 1 Gyr is 63.0%, and 89.3% in 3 Gyr. Over 4 Gyr, the position of Mars’
is given by a uniform distribution on a spherical cap limited by the obliquity 58.62◦, with the addition of a random noise allowing a slo
diffusion beyond this limit. We can also define a standard model of Mars’ insolation parameters over 4 Gyr with the most probab
0.068 for the eccentricity and 41.80◦ for the obliquity.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The parameters of Mars’ orbit and spin axis orientatio
control the global distribution and seasonal intensity of
solar insolation, and it is widely accepted that astronom
variations could have had a profound influence on its
matic history. These changes are probably characterize
a redistribution of the major martian volatiles (CO2, dust and
water) and variations in their partition between atmosphe
surface, and subsurface reservoirs.

Because the permanent CO2 cap is in equilibrium with
the atmosphere, the martian atmospheric pressure is
sensitive to the polar temperature and thereby to obliq
Climate models of CO2 evolution over obliquity change

* Corresponding author.
E-mail address: laskar@imcce.fr (J. Laskar).
0019-1035/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.icarus.2004.04.005
which include exchange between atmospheric, polar c
and regolith reservoirs suggest the possibility of large va
tions in atmospheric pressure(Ward et al., 1974; Toon et al
1980; François et al., 1990; Fanale and Salvail, 1994). De-
pending on the total inventory of available CO2, occasional
or prolonged periods of warmer, more clement, climate m
have resulted throughout geological history(Jakosky et al.
1995).

In the same manner, the transport and redistributio
water between ground ice, surface ice, and atmosph
reservoirs appear to be largely sensitive to orbital para
ters. Surface and near-surface ice stability is most stro
controlled by obliquity through the variations of the su
face thermal forcing and of the abundance of water
por sublimed in summer (e.g.,Mellon and Jakosky, 1995
Jakosky et al., 1995). Simplified climate models sugge
that during periods of high obliquity (> 40◦), large quan-
tities of polar ice could be sublimed and transported aw
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to the tropical regions where it becomes stable(Jakosky
and Carr, 1985; Jakosky et al., 1995). Such predictions
were recently confirmed by full three-dimensional clim
simulations(Haberle et al., 2000; Richardson and Wilso
2000, 2002; Mischna et al., 2003; Levrard et al., 200.
Conversely, at present obliquities and lower, water ice is
pected to be stable only in the high-latitude areas.

Many geological features provide the possibility of
cent orbital-driven climatic changes. The most impres
is the extensive layering observed in the polar deposits
thought to contain alternate layers of water ice and dus
different proportions. Correlation between stratigraphic
quences and insolation parameters suggests that polar
may preserve climatic records spanning the last few milli
of years(Laskar et al., 2002). Additional morphological ev
idence may be found in Mars Global Surveyor observat
of suspected recent water (gullies, paleolakes, outflow c
nels) or ice-generated (contraction-crack polygons, pa
glaciers) landforms (e.g.,Baker, 2001; Mustard et al., 200
Costard et al., 2002; Head and Marchant, 2003).

The presence of more ancient equatorial valley netw
and putative oceanic shorelines, which support the oc
rence of flowing water and different environmental co
ditions in early Mars (e.g.,Baker et al., 1991), illustrates
the extreme climate changes that Mars may have un
gone throughout its geological history. In this context, lo
term evolution and amplitudes of insolation parameters
a key element to understand the evolution of martian sur
processes.

The history of the computation of the astronomical so
tion for the forcing of martian paleoclimates is very simi
to what happened in the Earth’s case (seeImbrie and Im-
brie, 1979), but it occurred over a shorter time. The fi
climate models took only into consideration the preces
of the axis of the planet, that alters the seasonal con
(Leighton and Murray, 1966). Murray et al. (1973)then re-
alized that the change of eccentricity of the planet resul
from secular planetary perturbations (from 0.004 to 0.
in the solution ofBrouwer and Van Woerkom (1950)that
was then used), will modify significantly the insolation
the surface of the planet. The Earth spin axis obliquity
dergoes variations of about±1.3◦ around its mean valu
(23.3◦) (Laskar et al., 1993, and references therein) that a
now recognized to have a large impact on the past clim
of the Earth (seeImbrie and Imbrie, 1979). Ward (1973,
1974)was the first to realize that the obliquity of Mars s
fers much larger variations, due to the proximity of secu
spin orbit resonances. Using the orbital solution ofBrouwer
and Van Woerkom (1950)he found that the obliquity (ε) of
Mars was oscillating between� 14.9◦ and � 35.5◦. This
solution was later on improved, using the secular orbital
lution of Bretagnon (1974), which led to slightly larger vari
ations of the obliquity(Ward, 1979). A significant change
arose with the use of the secular solution ofLaskar (1988).
Using this orbital solution,Ward and Rudy (1991)found
that the obliquity evolution of Mars was critically depe
s

-

-

t

Fig. 1. Chaotic zone for the obliquity of Mars. Thex-axis is the initial obliq-
uity (in degrees) and they-axis is the precession constantα, in arcsec yr−1.
The regular solutions are represented by small dots, while large black
denote the chaotic solutions (adapted fromLaskar and Robutel, 1993).

dent on the initial precession rate, which was not kno
very precisely (seeSection 3.2). The reason for this behavio
was explained when it was demonstrated that the evolu
of Mars’ obliquity is chaotic(Laskar and Robutel, 1993
Touma and Wisdom, 1993). Moreover,(Laskar and Robu
tel, 1993)provided a global view for the dynamics of Mar
obliquity, describing the shape and extent of the assoc
chaotic zone (Figs. 1, 13). With this global portrait, and al
though the computations were only conducted over 45 M
they concluded that Mars’ obliquity can wander from 0◦ to
more than 60◦.

Since then, the most significant improvement for the c
putation of an astronomical solution for martian paleo
mate studies is in the determination of the initial preces
rate by the Pathfinder(Folkner et al., 1997)and Mars Globa
Surveyor space missions(Yoder et al., 2003), which now
permit a reliable obliquity solution for Mars over a few m
lion years.

After the pioneering work ofQuinn et al. (1991) and
Sussman and Wisdom (1992), and with the improvemen
of computer speed in the last decade, it becomes
possible to integrate numerically over hundreds of mill
of years (Myr) a dynamical model for the orbital evo
tion of the planetary orbits that is close to the ones u
for short time ephemerides computations (Laskar, 2001
Laskar et al., 2004; Varadi et al., 2003). In the first section
we will present the derivation of the orbital solution for Ma
over 250 Myr using the new symplectic integrator develo
in our group(Laskar and Robutel, 2001). Particular care is
taken to reduce the roundoff error, and the solution is c
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pared to the most up-to-date numerical ephemeris DE
(Standish, 1998). The second part is devoted to the p
cession and obliquity equations and to the stability of
solutions with respect to the uncertainty of the paramet
and in particular of the initial precession rate. Because of
chaotic behavior of the obliquity, a precise solution can
be derived over more than 10 to 20 Myr, but the equati
are integrated over 250 Myr in order to establish statistic
the possible variations of the obliquity over this time sp
In Section 5, this analysis is then continued over 5 Gyr. Ov
such an extended time, we do not use the direct nume
integration, but the secular equations ofLaskar (1990), af-
ter some small adjustment of the parameters. This all
us to increase the computer speed by a factor of 2000
to perform more extensive statistics, on both the orbital
obliquity solutions. We are then able to derive simple
alytical expressions that fit extremely well with the density
distribution of the eccentricity and obliquity over 5 Gyr (Sec-
tion 5.4). In this sense, thanks to the chaotic behavior of
solutions, we can make very precise predictions on the ob
uity and eccentricity evolution beyond 500 Myr, but thes
predictions are not for the exact values of these quanti
but for their probabilistic density functions.

2. Evolution over 250 Myr

In this first part, we will use a direct numerical integr
tion of the planetary orbital motion in order to investiga
the behavior of Mars’ obliquity over 250 Myr. As the orbit
motion is chaotic, even with a precise dynamical model,
computer roundoff numerical error alone will prevent o
taining a precise orbital solution for Mars over more th
60 Myr (seeFig. 4a). Moreover, the obliquity of Mars itsel
is chaotic, even more chaotic than its orbital motion(Laskar
and Robutel, 1993; Touma and Wisdom, 1993). This will
prevent even more drastically obtaining a precise solution
the obliquity over more than 10 to 20 Myr, with the prese
knowledge of the initial parameters (Section 3.2.1).

Our goal in this section will thus be to obtain a soluti
for the insolation parameters of Mars as precise as pos
ble over 10 to 20 Myr for use in Mars paleoclimate studi
Then, with the same model, to explore the behavior of
solutions over 250 Myr and to derive a statistical vision
this chaotic system. Although no precise prediction is po
ble over this time interval, we will be able to derive a prec
estimate of the density probability function for the evoluti
of the eccentricity of Mars and itsobliquity. It is in fact para-
doxical (see, for example,Lasota and Mackey, 1994) that it
is actually the chaotic behavior of the system that will
low us to make a precise prediction of the evolution of
density function of Mars’ orbital and rotational paramete

2.1. Orbital motion

The orbital model comprises all 9 main planets of
Solar System, including Pluto. The post-Newtonian gen
l

relativity corrections of order 1/c2 due to the Sun are in
cluded followingSaha and Tremaine (1994).

The Moon is treated as a separate object. In order to
tain a realistic evolution of the Earth–Moon system, we a
take into account the most important coefficient (J2) in the
gravitational potential of the Earth and of the Moon, and
tidal dissipation in the Earth–Moon system. We also in
grate at the same time the precession and obliquity equa
for the Earth and the evolution of its rotation period in a co
prehensive and coherent way, following the lines ofNéron de
Surgy and Laskar (1997) and Correia et al. (2003). More de-
tails on the integration model can be found in(Laskar et al.,
2004).

2.2. Numerical integrator

In order to minimize the accumulation of roundoff e
ror, the numerical integration was performed with the n
symplectic integrator schemeSABAC4 of Laskar and Robu
tel (2001), with a correction step for the integration of th
Moon. This integrator is particularly adapted to perturb
systems where the Hamiltonian governing the equation
motion can be written on the formH = A + εB, as the
sum of an integrable partA (the Keplerian equations o
the planets orbiting the Sun), and a small perturbation
tential εB (here the small parameterε is of the order of
the planetary masses). Using this integrator with step
τ is then equivalent to integrating exactly a nearby Ham
tonianH̃ , where the method’s errorH − H̃ is of the order
of O(τ8ε) + O(τ2ε2), and evenO(τ8ε) + O(τ4ε2) when
the correction step is added, while the same quantity i
the orderO(τ2ε) in the widely used symplectic integrator
Wisdom and Holman (1991), andO(τnε) + O(τ2ε2) with
the correctors ofWisdom et al. (1996).

The step size used in most of the integration isτ = 5×
10−3 yr = 1.82625 days. The initial conditions of the in
tegration were least-square adjusted to the JPL ephem
DE406(Standish, 1998), in order to compensate for sma
differences in the model. In particular, we do not take i
account the effect of the minor planets, and the modelin
the interactions in the Earth–Moon system is more comp
in DE406 (seeWilliams et al., 2001).

In Fig. 2ais plotted the evolution of the total energy
the system from−250 to+250 Myr, after the removal of th
secular trend that corresponds to the dissipation in the Ea
Moon system. The residuals are smaller than 2.5 × 10−10

after 250 Myr, and behave as a random walk with a stand
deviation per stepσ1 ≈ 2.7εM , whereεM ≈ 2.22× 10−16

is the machine Epsilon in double precision(Laskar et al.,
2004). The normal component of the angular momentum
conserved over the same time with a relative error of
than 1.3× 10−10 (Fig. 2b).

With these settings, the CPU time on a Compaq al
workstation (833 MHz) is about 24 h for 5 Myr, and
250 Myr run will last nearly two months.
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Fig. 2. Integrals conservation. (a) Relative variation of the total energy o
the system versus time (in Myr) from−250 to+250 Myr (with origin at
J2000) after correction of the secular trend due to the tidal dissipation i
Earth–Moon system. (b) Relative variation of the normal component o
total angular momentum.

2.3. Comparison with DE406

Using a direct numerical integrator, our goal is to prov
a long term solution for the orbital and precessional elem
of Mars with a precision that is comparable with the us
accuracy of a short time ephemeris.

We have thus compared our solution with the most
vanced present numerical integration, DE406, that was i
adjusted to the observations(Standish, 1998). In the presen
paper, we will only discuss the orbital solution of Ma
(Fig. 3).

Over the full range of DE406, that is from−5000 to
+1000 yr from the present date, the maximum differenc
Mars’ longitude is less than 0.28 arcsec. These differenc
probably account in large part for the perturbations by
minor planets that are not taken into account in our comp
tions. Over the whole interval, the difference in eccentric
is less than 5× 10−8, and less than 0.08 arcsec in inclina
tion.

2.4. Variations on the orbital model

We will not present here all the wanderings that we
in the past years while searching for a precise model, whic
led us to obtain several intermediate solutions. A general
cussion of the sensitivity of the orbital solution to the mod
resulting from the chaotic behavior of the solution can
found in (Laskar, 1999a). Although this analysis was don
with the secular equations, the conclusions would prob
not be much changed using the complete equations.
Fig. 3. Differences La2003− DE406 over the full range of DE406 (−5000
to +1000 yr from J2000) for the orbital solution of Mars for all elliptic
elements (a,λ, e,�, i,Ω), respectively. The units for semi-major axis (a)
are AU, and arcsec for mean longitude (λ), longitude of perihelion (� ),
inclination (i), and longitude of the ascending node (Ω) from the ecliptic
and equinox J2000.

The most recent determination of the solar oblaten
(J2), obtained with the SOHO and GONG helioseism
data giveJ2 = (2.18± 0.06) × 10−7 (Pijpers, 1998), with
a very similar value adopted in DE406 (J2 = 2 × 10−7,
Standish, 1998), while in DE200, it was not taken into a
count(Newhall et al., 1983). Even with this small value, th
absence of the solar oblateness in the dynamical mode
identified in (Laskar, 1999a)as one of the main source
uncertainty in the long term solution for the Solar Syste
We will thus consider that comparing the nominal solut
La2003 (with J2 = 2 × 10−7) with an alternate solutio
(La20030) with J2 = 0 is representative of the uncertain
of the dynamical model for our long term integrations.

The results La2003− La20030 for Mars’ eccentricity are
displayed inFig. 4bover 100 Myr. The effect of theJ2 be-
comes noticeable after about 30 Myr (26 Myr were predic
with an analytical estimate in(Laskar, 1999a)), and the so-
lution remains very similar over 40 Myr, and totally out
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phase after 45 Myr. We will thus consider here that 40 M
is about the time of validity of our present orbital soluti
for Mars.

In Fig. 4a, we have also tested the numerical stability
our numerical integration. This is done by comparison of
nominal solution La2003 (with stepsizeτ = 5 × 10−3 yr)
with an alternate solution, La2003∗, with the same dynam
ical model, and a very close stepsizeτ ∗ = 4.8828125×
10−3 yr. This special value was chosen in order that our o
put time spanh = 1000 yr corresponds to an integer numb
(204800) of steps, in order to avoid any interpolation pr
lems in the check of the numerical accuracy.Figure 4ais thus
a test of the time of validity for the obtention of a prec
numerical solution with a given dynamical model, which
thus limited here to about 60 Myr.

This limitation of 60 Myr is at present a limitation fo
the time of validity of an orbital solution, independently
the precision of the dynamical model. In order to go bey
this limit, the only way will be to increase the numeric
accuracy of our computations, by improving the numerica

Fig. 4. Stability of the solution for Mars’ eccentricity. (a) Difference
the nominal solution La2003 with stepsizeτ = 5× 10−3 yr, and La2003∗,
obtained withτ∗ = 4.8828125× 10−3 yr. (b) Difference of the nomina
solution with the solution obtained while settingJ2 = 0 for the Sun (instead
of 2× 10−7 in the nominal solution).
algorithm, or with an extended precision for the number r
resentation in the computer. It should be noted that with
present algorithms, we are much more limited by the pr
sion of the model (Fig. 4b) than by the numerical accurac
(Fig. 4a).

At this point, we need to stress that after showing that
solution is probably not precise over more than 40 Myr, a
certainly not after 60 Myr, we are going in the remaini
part of this paper to compute solutions over 250 Myr w
the same algorithm (Fig. 5), and even 5 Gyr with the secula
equations. This is indeed justified, as in this case we will
pretend to provide the actual solution for the evolution of
Solar System, but just investigate its possible behavior.

Finally, as it will be shown in the next sections, beca
of the strong chaos of the obliquity evolution of Mars, and
the uncertainties onits initial conditions, the obliquity solu
tion will only be valid over 10 to 20 Myr, that is over muc
less time than the orbital computation. Over such a s
time, the orbital present solution is certainly computed w
a very good accuracy (Fig. 4b).

3. Precession equations

The equations for the evolution of precession and ob
uity of Mars are rather simple, as contrary to the Ear
case, the effect of the satellites can be neglected. Inde
was shown byGoldreich (1965)that when a satellite is clos
to its planet, its orbit precesses about the planet’s equ
ial plane, as it is the case for Phobos and Deimos. In
case, the averaged torque exerted by the satellite is zero
Laskar, 2004).

We suppose here that Mars is an homogeneous rigid b
with moments of inertiaA < B < C and we assume that it
spin axis is also the principal axis of greatest inertia. T
precessionψ and obliquityε (Fig. 6) equations for a rigid
planet in the presence of planetary perturbations are g
by (Kinoshita, 1977; Laskar et al., 1993; Néron de Su
and Laskar, 1997):

(1)

{
dε
dt

= −B(t)sinψ +A(t)cosψ,

dψ
dt

= α cosε − cotε
(
A(t)sinψ +B(t)cosψ

) − 2C(t),
Fig. 5. The nominal solution La2003 for Mars’ eccentricity over 250 Myr.
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Fig. 6. Fundamental planes for the definition of precession and obliq
Eqt andEct are the mean equator and ecliptic of Mars at datet . Ec0 is the
fixed ecliptic of the Earth at Julian date J2000, with equinoxγ0. The general
precession in longitudeψ is defined byψ = Λ − Ω . Ω is the longitude of
the node, andi the inclination. The angleε betweenEqt andEct is the
obliquity.

with

(2)



A(t) = 2√

1−p2−q2

[
q̇ + p(qṗ − pq̇)

]
,

B(t) = 2√
1−p2−q2

[
ṗ − q(qṗ − pq̇)

]
,

C(t) = qṗ − pq̇,

whereq = sin(i/2)cosΩ andp = sin(i/2)sinΩ , and where
α is the “precession constant”:

(3)α = 3G

2ω

m�
(a

√
1− e2)3

Ed,

wherem� is the solar mass,G the gravitational constan
ω the rotation rate of the planet, andEd = (2C − A −
B)/2C its dynamical ellipticity. For a fast rotating plan
like Mars,Ed can be considered as proportional toω2; this
corresponds to hydrostatic equilibrium (see, for exam
Lambeck, 1980). In this approximation,α is thus propor-
tional toω. The quantitiesA, B, andC describe the driving
terms due to the secular evolution of the orbital plane of
planet and are given by the integration of the planetary
tions.

3.1. Dissipative effects

The possible dissipative effects influencing the evolu
of Mars’ spin axis are: tidal dissipation due to the Sun, co
mantle friction, and climate friction.

3.1.1. Tidal dissipation
We have considered the tidal contribution from the S

following the equations given in(Néron de Surgy an
Laskar, 1997; Correia et al., 2003). Tidal contributions from
the satellites Phobos and Deimos can be neglected com
with solar tides(Lambeck, 1979; Mignard, 1981). As shown
in Fig. 7a, the effect of solar tidal dissipation is also ve
small, as it amounts to less than 0.002◦ after 10 Ma. As a
consequence, the rotation rate of the planet did not ch
very much since the beginning of the Solar System.
choice of the tidal dissipation model is then not very re
vant and we decided to use for Mars a constant-Q model
d

Fig. 7. Influence of parameter variation. The change (in degrees) observ
over 10 Ma for the various parameters. (a) Effect of tidal dissipat
(b) core–mantle friction; (c) 10× the uncertainty in the initial obliquity;
(d) 10× the uncertainty in the initial precession angle.

(seeCorreia et al., 2003, for the explicit equations). For th
model, the dissipation is independent of the rotation r
and its amplitude is proportional tok2 sin(2ω
t) � k2/Q,
where
t is the time delay between the tidal perturbat
from the Sun and the consequent deformation of the pla
We used for the nominal solution La2003 a second L
numberk2 = 0.14 and a dissipative factorQ = 50, while for
the more recent La2004 solution (seeSection 3.2.2) we used
k2 = 0.149 andQ = 92 from (Yoder et al., 2003). In both
cases, the tidal contribution remains very small.

3.1.2. Core–mantle friction
Little is known about the interior of Mars, since there a

few geophysical constraints on its internal structure. H
ever, the presence of a core can be inferred by the p
moment of inertia(Cook, 1977; Zhang, 1994). The exis-
tence of remnant crustal magnetism(Acuña et al., 1999)and
the best determination of the polar moment of inertia so
(Folkner et al., 1997)imply that Mars’ core has substanti
iron and that at least the outer part is liquid(Yoder et al.,
2003). Because of their different densities, the core and
mantle do not have the same dynamical ellipticity. Since
precession torques exerted by the Sun on Mars’ core
mantle are proportional to this quantity, the two parts t
to precess differently around an axis perpendicular to the
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bital plane (this results from Poincaré’s study (1910) on the
motion of an inviscid fluid contained in a rotating ellipsoid
shell). This tendency is more or less counteracted essen
by two different interactions produced at the interface:
torque of non-radial inertial pressure forces of the ma
over the core provoked by the non-spherical shape of t
interface; and the torque of the viscous friction between th
core and the mantle (e.g.,Correia et al., 2003). The effect of
core viscosity in the Earth’s case was treated byStewartson
and Roberts (1963) and Roberts and Stewartson (1965for
low values of viscosity, by linearizing the equations
the viscous boundary layer.Busse (1968)further studied
the effect of the non-linear advective term in the eq
tions. The contribution of core–mantle friction to the se
ular variation of the obliquity is given by(Rochester, 1976
Pais et al., 1999):

(4)ε̇ � −κ
α2 cos3 ε sinε

γelCEc
2ω2

,

with (Roberts and Stewartson, 1965; Busse, 1968)

(5)κ � 2.62
Cc

√
ων

Rc
,

whereCc , Ec, andRc are respectively the core’s polar m
ment of inertia, dynamical ellipticity and radius;ν is the
kinematic viscosity andγel � 0.75 a correcting factor ac
counting for the elastic deformation of the mantle. The ki
matic viscosity (ν) is poorly known. Even in the case o
the Earth, its uncertainty covers about 13 orders of m
nitude (Lumb and Aldridge, 1991). It can be as small a
ν = 10−7 m2 s−1 for the Maxwellian relaxation time an
experimental values for liquid metals or as big asν =
105 m2 s−1 for the damping of the Chandler wobble or atte
uation of shear waves. The best estimate so far of the a
value of this parameter isν � 10−6 m2 s−1 (Gans, 1972;
Poirier, 1988). The secular obliquity variations given by e
pression(4) are of the same order as the tidal variations
the highest values of the viscosity and can be neglecte
the best estimations. Indeed, withQ = 100 we compute fo
tidal evolution:

(6)ε̇tides∼ 10−7arcsecyr−1.

UsingRc = 1.68× 106 m (Yoder et al., 2003), Cc = 0.06C
(we computeCc = 8πρFeR

5
c /15, with ρFe � 7 g cm−3) and

Ec = 0.5Ed (we computeEc/Ed = CR5
c /CcR

5), we have
for secular obliquity variations resulting from core–man
friction:

(7)ε̇cmf ∼ 10−7√ν[m2 s−1] arcsecyr−1.

For weak viscosity like the best estimations for the Ea
(ν ∼ 10−6 m2 s−1), we haveε̇cmf ∼ 10−3ε̇tides, that is, the
core–mantle friction effect can be neglected with respec
solar tides (Fig. 7b). Since this parameter is very uncerta
we can expect that electromagnetic coupling or turbule
to increase friction at the interface between the core
the mantle. We can then talk about an effective visco
l

some orders of magnitude higher, but we see that eve
ν ∼ 1 m2 s−1, we still haveε̇cmf ∼ ε̇tides. The core–mantle
friction effect is then of the same order of tidal effects o
even weaker.

3.1.3. Climate friction
Climate friction is a positive feedback process betw

obliquity variations and the resulting redistribution of vo
tiles at the planetary surface that affect its dynamical e
ticity. Although a significant fraction of the variations
surface loading is compensated by the visco-elastic ad
ment of the internal planetary mass, delayed respons
climatic and viscous relaxation processes may lead to a
ular term in the obliquity evolution. Conversely to previo
dissipative effects, climate friction not only depends on
instantaneous value of the obliquity but also on its dyna
cal evolution.

The impact of CO2 and water caps has been respectiv
studied byRubincam (1990,1993) and Bills (1999)using
linear approximations for the obliquity dynamics and glo
mass redistribution. Because both the volatile respons
obliquity forcing and martian internal parameters (dens
elasticity, rigidity, viscosity) are still poorly constrained
long-term estimation of the climate friction impact is ve
uncertain. Similar analyses suggest that obliquity-oblate
feedback has probably not changed the Earth’s obliquity
more than 0.01◦ per Myr during the severe recent Pliocen
Pleistocene glaciations (∼ 0–3 Ma) (Levrard and Laskar
2003). Since the martian caps are about one order of ma
tude less massive than the water/ice mass involved in typ
terrestrial ice age, we expect that its impact is negligible o
the last 20 Myr, compared to other sources of uncerta
and it was not taken into account in our long-term obliqu
solutions.

Other geophysical processes, such as volcanic event
uplifts, construction of the large Tharsis province or H
las impact basins, or formation of mass anomalies ass
ated with mantle convection could have produced chan
of early Mars’ obliquity(Ward et al., 1979), but they do not
affect the recent 20 Myr of martian history.

3.2. Initial spin axis orientation

As the motion of Mars’ spin axis is chaotic(Laskar and
Robutel, 1993; Touma and Wisdom, 1993), its evolution crit-
ically depends on its precise initial conditions. Significant
improvements were made on this determination with the
sults of the Pathfinder mission(Folkner et al., 1997)which
provided some estimates on the determinations of the in
conditions for the spin of Mars (Table 1). According to their
paper, this uncertainty represents five times the standar
ror (σ ) obtained during their fitting process to the data. T
is more than what is usually done (3σ ), but according to the
authors, this allows for ‘the failure to account for vario
systematic effects.’ We will be thus even more cautious
these data, and investigate its possible variations up toσ ,
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Table 1
Initial conditions from(Folkner et al., 1997)

Parameter Value

Obliquity ε (degrees) 25.189417(35)
Nodeψ (degrees) 35.43777(14)
Precession ratedψ/dt (mas yr−1) −7576(35)
Rotation rateω (degrees day−1) 350.89198521(8)

The uncertainty is given in parentheses in the units of the last displaye
digit.

that is 2δp, aroundp0 where

p0 = −7.576 arcsec yr−1,

(8)δp = 0.035 arcsec yr−1

are the initial value of the precession rate and its uncerta
given inTable 1.

First of all, we will show that the uncertainty on the in
tial position of the pole axis is sufficiently small and does
induce significant changes in the solution. We have thus
some numerical integrations with a deviation of 10 times
uncertainty in both the initial obliquity (Fig. 7c) and preces
sion angle (Fig. 7d). In both cases, the maximum differen
with respect to the nominal solution is less than 0.001◦ after
10 Myr, and thus negligible, compared to other uncertain

3.2.1. Precession constant
In fact, the main source of uncertainty in the long te

evolution of the obliquity of Mars is the uncertainty in t
initial precession rate of Mars. Nevertheless, even when
ing pessimistic with respect to the accuracy of the publis
determination (Table 1), the situation after the Pathfind
mission is much improved, and it is now possible to de
results over 10 Myr with confidence. In order to test the
bility of the obliquity solution with respect to the uncertain
δp of the initial precession frequencyp, we have integrate
401 different solutions over 100 Myr, using always as an
put the same orbital solution, and with an initial precess
frequencypk = p0 + k × δp/100, for k = −200, . . . ,200.
The different solutions are very similar in the vicinity
the origin, but after a few millions of years, they diver
significantly, as a result of the chaotic behavior of the s
precession, resulting from the secular perturbations of
other planets(Laskar and Robutel, 1993).

In Fig. 8b, we have summarized the obliquity evol
tion of all these solutions. For each solutionεk(t), (k =
−200, . . . ,200), we have computed the maximumMk(t)

and minimal valuemk(t) reached by the obliquity ove
1 Myr. We have then taken the upper and lower envelo
of these curves. The 4 curves are thus (in decreasing va
100 Myr) S1 = Max(Mk), S2 = Max(mk), S3 = Min(Mk),
S4 = Min(mk). They represent the extreme variations of
obliquity over 100 Myr. As was first shown in(Laskar and
Robutel, 1993), the variation of the obliquity ranges from 0◦
to more than 60◦.

The differences of the curvesS1, S3 andS2, S4 represen
the variability of the solutions. It is thus clear that if the u
t

Fig. 8. Variations in the obliquity solution due to the uncertainty in the p
cession frequency. In (a), 1001 solutions of the obliquity are computed,
initial precession values ranging fromp0 − δp/2 top0 + δp/2 with an even
stepsize. In (b) the same analysis is made with 401 solutions with initial
cession values ranging fromp0 − 2δp to p0 + 2δp. The maximumMk and
minimummk envelopes over 1 Myr are computed for each solutionk. The
plotted curves are then:S1 = max(Mk), S2 = max(mk), S3 = min(Mk),
S4 = min(mk).

certainty on the precession frequencyp is 2δp, the solution
for the obliquity cannot be precise over more than 10 My

We have repeated the same experience with a more
timistic view, with an initial precession frequencypk =
p0 + k × δp/1000, for k = −500, . . . ,500, that is on the
intervalp0 − δp/2,p0 + δp/2. In this case, the variation o
the obliquity also ranges from 0◦ to more than 60◦, but the
solution appears to be valid over nearly 20 Myr (Fig. 8a).

Depending on the reliability of the uncertainty onp0
given in Table 1, we can thus provide a reliable solutio
for the obliquity of Mars over 10 to 20 Myr. The nomin
solution (denoted La2003) can be retrieved from the W
sitehttp://www.imcce.fr/Equipes/ASD/mars.htmlfrom −20
to +10 Myr (Fig. 9) together with the subroutine for th
computation of the various insolation quantities followi
Laskar et al. (1993). This is the solution that was used for t
paleoclimate analysis of Mars polar cap layers in(Laskar et
al., 2002). A very important constraint in this analysis w
the observation that despite the uncertainty of the preces
constant, and even using 2δp for this uncertainty, all the so
lutions presented a large increase of the obliquity at 5
(Figs. 8b, 10), already observed in some solutions ofWard

http://www.imcce.fr/Equipes/ASD/mars.html
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Fig. 9. Obliquity (in degrees) of the nominal solution La2003 from−20 to
+10 Myr.

and Rudy (1991) and Touma and Wisdom (1993), whose ef-
fect should have been noticeable on the ice record.

3.2.2. The solution La2004
The previous discussion demonstrates the importanc

a better determination of Mars’ initial precession rate,
this will be the only way to extend further our knowled
of the past insolation on the planet. We will thus be
tentive to the next space missions to Mars with geod
studies. The Netlander mission, initially projected in 20
is a very good candidate for this goal(Barriot et al., 2001).
One should consider that the determination with only
Viking mission gavep = −7.83± 0.3 arcsec yr−1 (proba-
bly 3σ ) (Yoder and Standish, 1997), while the addition of
the Pathfinder mission gavep = −7.576±0.035 arcsec yr−1

(5σ ). More recently, using the Mars Global Surveyor da
Yoder et al. (2003)gave a new determination of the pr
cession constant asp = −7.597± 0.025 arcsec yr−1. The
uncertainty is still 5σ , and is slightly improved with respec
to the previous determination. We have thus updated ou
lution using these new data. MoreoverYoder et al. (2003)
give also an improved determination of the tidal coefficie
k2 = 0.149± 0.017 andQ = 92± 11 that are different from
the values of our nominal solution (k2 = 0.14 andQ = 50).
As the tidal dissipation is very small (Fig. 7), this has no
noticeable effect on the solution, but we have updated th
data to their new values as well. The resulting solution w
thus be called La2004, and will be provided as well on
Websitehttp://www.imcce.fr/Equipes/ASD/mars.html.

The difference of the two solutions over 20 Myr is sm
(compareFigs. 9 and 10a), and we have not done aga
the previous stability analysis with the updated values
La2004. The solution La2004 for the obliquity, eccentr
ity, and insolation in summer at the North pole is given
Fig. 10.

4. Variations over 250 Ma

We have plotted inFig. 11several examples of the sol
tions obtained by changing the initial precession ratep by a
small amount. In this figure, the label of each panel indicate
Fig. 10. Obliquity (in degrees) (a), eccentricity (b), and insolation (c)
watt m−2) at the north pole surface at the summer solstice (LS = 90◦) for
the solution La2004 from−20 to+10 Myr.

the offset inp in units ofδp/100. In the labels, “Pxxx” corre
sponds to an initial precession ratep = p0+xxx×δp/1000,
and “Nxxx” to p = p0 − xxx × δp/1000. The solution
“301003BIN_A.P000” is thus the nominal solution La200
All the solutions in this figure are thus withinp0 ± δp/5 and
can be considered as equiprobable. They represent th
riety of all the computed 1001 solutions, and some typ
behavior.

In particular, we put in this plot the two solutions wi
closest initial conditionsp0 ± δp/1000 from the nom-
inal solution, and one can thus very well understa
by looking at the very different behavior of the thr
solutions “301003BIN_A.N001,” “301003BIN_A.P000
“301003BIN_A.P001,” that it will be very difficult to predic
precisely the past evolution of Mars’ obliquity over mo
than a few tens of millions of years. We are thus left with
only possibility; that is, to search for the possible behav
of the obliquity in the past. We will first look to the max
mum possible variations of the obliquity, and then to its m
probable evolution, by computing a density function for
main factors of the climate variation, the obliquity and t
eccentricity. The longitude ofperihelion from the moving
equinox is also important for the determination of the in
lation on the surface of the planet, but after a few millio

http://www.imcce.fr/Equipes/ASD/mars.html
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Fig. 11. Examples of possible evolution of Mars’ obliquity over the past 250 Myr.



Long term evolution of the insolation of Mars 353

or-
r 3,
gra-

zed

om-

all
ity
bed
ility

al
ns
way

he
ch
yr,
or-
s

5
d

liq-
,
p

be
-

ons

es

ea-

r

lar
ular

liq-
lap,

ne
he
c-

is

ot
sion
cy

e.
on
ies
us

ions
-

But
ut-

e
ave
yr,

r-
ble,

h

e
is-
Fig. 12. The probability (vertical axis) of reaching a given obliquity (h
izontal axis) after a specified time is given by the different curves, fo
5, 10, 25, 50, 100, and 250 Myr. The estimate is obtained by 1001 inte
tions for regularly spaced values ofp ranging fromp0 − δp/2 arcsec yr−1

to p0 + δp/2 (Eq. (8)).

of years, we can assume that it will be entirely randomi
over[0,2π].

4.1. Maximum variations over 250 Ma

As we cannot display the 1001 examples that we c
puted, withp ∈ [p0 − δp/2,p0 + δp/2], for the possible
obliquity evolution over 250 Myr, we have summarized
the different cases by computing the maximum obliqu
reached by the different solutions over a given prescri
time. The results are then transcribed in terms of probab
to reach a given obliquity before a given time (Fig. 12).

For 3, 5, or 10 Myr, the plotted curve is nearly a vertic
line. This reflects the fact that, over 10 Myr, all the solutio
are very close to each other, and behave in the same
So they all reach 35◦ before 3 Myr, remain below 40◦ until
5 Myr, and then reach about 48◦ before 10 Myr.

After 10 Myr, the situation is different, as due to t
chaotic diffusion of the trajectories, some of them will rea
high values of the obliquity. We observe that over 25 M
the effect of chaos is already visible, and some of the
bits reach 50◦. After 100 Myr, a significant part of the orbit
(about 13%) went beyond 60◦.

4.2. The chaotic zone

In Fig. 12, it appears that when the obliquity reaches 5◦,
then it rapidly reaches 60◦ as well. This can be understoo
by looking to the shape of the chaotic zone for Mars ob
uity (Fig. 13). This plot (adapted fromLaskar and Robutel
1993, and Laskar, 1996) is obtained using Frequency Ma
analysis (Laskar, 1990, 1999b). In Fig. 13a, a refined de-
termination of the precession frequencyp (in arcsec yr−1)
is plotted versus the initial obliquity (in degrees). It can
shown(Laskar, 1999b)that regular trajectories will corre
.

spond to a smooth part of this curve, while chaotic regi
will occur when the frequency curve is not regular.

The chaotic zone is divided essentially in two box
B1,B2, that appear clearly onFigs. 13a, 13b. The first box
B2 ranges from about 10◦ to 50◦, while B1 extents from
about 30◦ to 60◦ (the actual size of these boxes can be m
sured on the ordinate axis ofFig. 13b). B1 mostly results
from the secular perturbations related to thes1 secular prope
mode related to Mercury, whileB2 is mostly due tos2 that
is related to Venus. Each of these two modess1, s2 is asso-
ciated to multiple side terms (Fig. 13c) resulting from the
complex behavior of the orbital motion of the inner So
System, and in particular from the presence of the sec
resonance associated with(g1 − g5) − (s1 − s2) (seeLaskar,
1990, for more details). As a consequence for the ob
uity, all the resonances with these side terms will over
and thus increase the chaotic zone arounds1 and s2. In-
sideB1 or B2, the chaotic diffusion is large, and the zo
is completely explored in a relatively short time, but t
communication between the two boxes is more difficult. O
casionally, a trajectory initially inB2 will find the door to
B1, and its obliquity will reach values larger than 50◦. But
as it is now in theB1 box, the strong chaotic diffusion of th
box will lead the solution very rapidly to more than 60◦. Be-
yond 60◦, the frequency curve is more regular, but still n
completely smooth. We can thus expect some slow diffu
to higher values of the obliquity. Moreover, the frequen
map of Fig. 13a is obtained over a relatively short tim
Over longer times the slow diffusion of the orbital soluti
itself will change slightly the values of the main frequenc
(Laskar, 1990), and the chaotic zones will be displaced, th
sweeping a larger area.1

4.3. Obliquity statistics over 250 Myr

The maximum value reached by the obliquity (Fig. 12)
is an important quantity, as even if these extreme situat
(like ε > 60◦) may not last for a long time, they could in
duce important effects on the martian climate evolution.
now we will look for the most probable situation, by comp
ing the density distribution of the obliquity over various tim
spans for all our 1001 solutions. For this purpose, we h
sampled all these solutions with a sampling rate of 5000
and plotted the normalized density functionfT (ε) over suc-
cessive time spansT = 3,50,100,250 Myr (Fig. 14).

It is striking to see that over relatively short time inte
val, as 3 Myr, when the chaotic behavior is not noticea
the distribution is very irregular, but as the time intervalT

increases, the density functionfT (ε) becomes very smoot

1 In their integrations,Touma and Wisdom (1993)found that Mars’
obliquity only increases up to 49◦. This can be easily understood with th
help ofFig. 13. Most probably, the solutions explored by Touma and W
dom remained only inB2 during their limited integration time.
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Fig. 13. Frequency analysis of Mars’ obliquity. (a) The frequency map is obtained by reporting in the ordinate the value of the precession frequency obtained
for each of the 1000 integrations over 56 Myr for the different values of theinitial obliquity (abscissa). A large chaotic zone is visible, ranging from 0◦ to about
60◦, with two distinct zones of large chaos,B1 andB2. (b) Maximum and minimum values of the obliquity reached over 56 Myr. In (c), the power spe
of the orbital forcing termA+ iB (Eq. (2)) is given in logarithmic scale, showing the correspondence of the chaotic zone with the main secular frequenc
s1, s2, s7, s8 (adapted fromLaskar and Robutel, 1993, and Laskar, 1996).
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and very close to a pure Gaussian densityGm,σ (x)

(9)Gm,σ (x) = 1√
2πσ

exp

(
− (x − m)2

2σ 2

)
with mean valuem and standard deviationσ . Indeed, in
Fig. 14, the obliquity distribution is plotted in full line, while
we plotted in dashed line the Gaussian distributionGm,σ (x)

with meanm = ε̄ and standard deviationσ = σε . The cor-
responding values for̄ε andσε over the various values ofT
are given inTable 2.

5. Diffusion over 5 Gyr

Now, we will analyze the possible evolution of the orbi
and precessional solution over 5 Gyr, that is, over a t
comparable to the age of the Solar System. Over this
span, we will be able better to understand the effect of
slow chaotic diffusion of the orbital motion of the Solar Sy
tem.

Indeed, when the main secular frequencies of the or
motion will change, as a result of the chaotic diffusion,
chaotic region in the frequency space (Fig. 13) will be mod-
ified, and the obliquity may enter more easily in altern
Table 2
Statistics for the obliquity evolution over 250 Myr

T (Myr) εM (◦) εm (◦) ε̄ (◦) σε (◦)
3 35.218 15.009 25.254 4.992
5 38.411 13.578 26.874 5.845

10 46.859 13.578 31.468 7.187
25 49.781 13.578 34.218 6.543
50 61.903 5.289 34.427 7.099

100 64.898 3.014 34.199 8.354
250 66.154 0.043 34.643 9.966

Maximum (εM ), minimum (εm), average (̄ε), and standard deviation (σε )
of the obliquity are given over different time intervals (col. 1). The nomi
orbital solution is used, and the statistics are performed over 1001 obli
solutions with initial conditions for regularly spaced values ofp ranging
from p0 − δp/2 to p0 + δp/2.

regions of the phase space. We thus expect that the diffu
of the planetary trajectories will lead to a larger diffusion
the obliquity.

5.1. The secular equations

In order to investigate the diffusion of the orbits ov
5 Gyr, we will use the secular equations ofLaskar (1990),
with some small modifications. The secular equations
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Fig. 14. Normalized density function for the obliquity of Mars over 3, 5
100, and 250 Myr (full lines). The dashed lines are the best fit wit
Gaussian density.

obtained by averaging the equations of motion over the
angles that are the mean longitudes of the planets. Ind
due to the degeneracy of the Keplerian problem, the o
coordinate angles (longitudes of the perihelion and node
evolve much more slowly, as their motion results uniqu
from the mutual planetary perturbations, and the perturba
tion of the pure Newtonian point mass attraction of the S
from general relativity and quadrupole moment of the S
The averaging of the equation of motion is obtained by
panding the perturbations of the Keplerian orbits in Fou
series of the angles, where the coefficients themselve
expanded in series of the eccentricities and inclinations.
averaging process was conducted in a very extensive wa
to second order with respect to the masses, and throug
gree 5 in eccentricity and inclination, leading to truncate
secular equations of the Solar System of the form

(10)
dw

dt
= √−1

{
Γ w + Φ3(w, w̄) + Φ5(w, w̄)

}
,

where w = (z1, . . . , z8, ζ1, . . . , ζ8), with zk = ek exp(�k),
ζk = sin(ik/2)exp(Ωk) (�k is the longitude of the perihe
lion). The 16× 16 matrix Γ is similar to the linear ma
,

-

trix that was originally derived by Lagrange and Laplace
demonstrate that at first order, the Solar System is sta
while Φ3(w, w̄) andΦ5(w, w̄) gather the terms of degree
and 5.

The system of equations thus obtained contains s
150,000 terms, but can be considered as a simplified sys
as its main frequencies are now the precession frequenc
the orbits of the planets, and no longer comprise their orb
periods. The full system can thus be numerically integra
with a very large stepsize of 200 to 500 yr. Contributions d
to the secular perturbation of the Moon and general relati
are also included (seeLaskar, 1990, 1996, for more details
and references).

This secular system is then simplified and reduced
about 50,000 terms, after neglecting terms of very sm
value(Laskar, 1994). Finally, a small correction of the term
of the matrixΓ of (10), after diagonalization, is performe
in order to adjust the linear frequencies, in a similar way
it was done in(Laskar, 1990). Indeed, in the outer planeta
system, terms of higher order are of some importance,
their effect will mainly be slightly to modify the values o
the main frequencies of the system. The correction tha
done here is a simple way to correct for this effect.

The original solutions ofLaskar (1990)are very close to
the direct numerical integration La2003 over 10 to 20 M
(Laskar et al., 2004). With the present small adjustment, w
obtain a significant improvement, and the solutions are v
close over about 35 Myr (Figs. 15, 16). It should be noted
that this time is also about the time over which the num
cal solution itself is valid (Fig. 4), due to the imperfection
of the model. Moreover, as the stepsize used in the s
lar equations is 200 yr instead of 1.82625 days, over v
long times the numerical noise will be smaller. It is th
legitimate to investigate the diffusion of the orbital moti
over long times using the secular equations. The major
vantage, besides reducing the roundoff errors, resides i
computation speed: the integration of the secular equa
is 2000 times faster than the integration of the non-avera
equations, and we can compute a 5 Gyr solution for
Solar System in 12 hours on a Compaq alpha worksta
(833 MHz). We will thus be able to make statistics ov
many solutions with close initial conditions. In these co
putations, our main limitation will be in the huge amount
data generated by these numerical integrations.

5.2. Eccentricity

We have integrated first 403 orbital solutions, retain
only the largest values reached by the eccentricity. The
sults of the maximum eccentricity reached after 25, 1
250, 500, 1000, 2000, and 5000 Myr are given inFig. 17. As
expected in a diffusive process, the maximum value reach
by the eccentricity increases slowly with time.

We have also performed 200 orbital solutions, reta
ing the values of the eccentricity with a sampling rate of
25,000 yr in order to establish the density distribution
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ti
Fig. 15. Eccentricity of Mars over 40 Myr. The full line is the pure numericalsolution La2003, while the dotted line is obtained with the secular equaons
from (Laskar, 1990, 1994)(Eq. (10)). The two solutions are quasi-identical over 32 to 35 Myr.

Fig. 16. Inclination of Mars over 40 Myr (in degrees, referred to the ecliptic J2000). The full line is the pure numerical solution La2003, while the dotted line
is obtained with the secular equations from(Laskar, 1990, 1994)(Eq. (10)). The two solutions are quasi-identical over 32 to 36 Myr.
ery
ffu-
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the eccentricity over different time spans (Fig. 18). It is
striking that the density function converges towards a v
smooth density function beyond 1 Gyr, as the chaotic di
sion is dominant, while over 25 Myr, where the motion
very predictable, the density distribution cannot be appr
mated by a simple function. The associated mean valueē)
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Fig. 17. The probability (vertical axis) of reaching a given eccentricity (h
izontal axis) after a specified time is given by the different curves, for
100, 250, 500, 1000, 2000, 5000 Myr. The estimate is obtained with
different orbital solutions of the secular equations.

Fig. 18. Normalized density function for the eccentricity of Mars over
250, 1000, and 5000 Myr. For 250 Myr, the dotted line is the density
tained over the pure numerical solution La2003.

and standard deviations (σe) of the eccentricity distribution
are given inTable 3.
Table 3
Statistics for the eccentricity evolution over 5 Gyr

T (Myr) ē σe

25 0.066765 0.025551
100 0.069046 0.025592
250 0.069664 0.026361
500 0.069430 0.026914

1000 0.068936 0.027725
2000 0.068754 0.028602
5000 0.068989 0.029937

400 solutions of the secular equations are integrated over 5 Gyr with
initial conditions.

Table 4
Maximal and minimal values reached by the obliquity over 5 Gyr

T (Myr) εM (◦) εm (◦)
5 38.442 13.594

10 46.907 13.594
25 50.310 13.594
50 62.274 3.786

100 65.874 0.014
250 70.508 0.001
500 72.543 0.001

1000 74.678 0.000
2000 76.005 0.000
3000 79.465 0.000
5000 82.035 0.000

200 solutions of the secular equations were integrated over 5 Gyr with
initial conditions, and for each orbital solution, 1001 obliquity solutio
with initial conditions for regularly spaced values ofp ranging fromp0 −
δp/2 to p0 + δp/2 were integrated.

In Fig. 18, even if the density function of the eccentrici
over 5000 Gyr is very smooth, it appears to be slightly diff
ent from a true Gaussian function. In particular, the den
goes to zero for zero eccentricity, with a linear behavior n
the origin. This will be discussed inSection 5.4.1.

5.3. Obliquity

We have done the same analysis for the obliquity o
5 Gyr, with 1001 solutions of the obliquity, for each of t
200 orbital solutions, integrated with close initial conditions
The maximum obliquity reached after 10, 25, 50, 100, 2
500, 1000, 2000, 3000, 5000 Myr are given inTables 4 and 6
and inFig. 19.

The density function for the obliquity over 50, 100, 25
500, 1000, 2000, 3000, 4000 Myr is displayed inFig. 20,
and the corresponding mean valuesε̄ and standard deviatio
σε are given inTable 5.

The maximal value reachedby the obliquity is 82.035◦,
although the probability to reach more than 80◦ over 5 Gyr is
only 0.015% (Table 6). More realistically, there are still 4%
of the solutions that went beyond 70◦ in less than 3 Gyr. In
these cases, the orbits were able to find their way in the z
of chaotic small diffusion between the resonancess1 ands7
(Fig. 13). Finally, we are nearly certain that the obliqu
of Mars went to higher values than 60◦ during its history,
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Fig. 19. The probability (vertical axis) of reaching a given obliquity (ho
zontal axis) after a specified time if given by the different curves, for 10
100, 250, 500, 1000, 2000, 3000, 5000 Myr. The estimate is obtained
200 different orbital solutions, with, for each of them, 1001 integrations
regularly spaced values ofp ranging fromp0 − δp/2 to p0 + δp/2.

Fig. 20. Normalized density distribution of the obliquity of Mars, over 50
100, 250, 500, 1000, 2000, 3000, and 4000 Myr. This is obtained wit
different orbital solutions, and for each of them 501 obliquity solutio
with a sampling time of 1000 yr.

as 95% of the solutions reachedthis value. Closer to th
present, the probability to have reached 60◦ before 1 Gyr
is about 63%.

In Fig. 21, the similar quantities are plotted for a sing
solution of the obliquity. In this case, the density funct
of the obliquity is very different, as over 4 Gyr (full line
it has two distinct maxima. Indeed, the individual solutio
can present very different behavior, and in the present ca
appears that the solution remained for a long time in the
“box” B1 related to secular resonances withs1, and also for
a long period in the “box”B2 related tos2, but never much
in between (seeFig. 13). When the statistics are made ov
many orbital solutions, theseregions will be displaced, an
the repartition of the obliquity will become more even.
t

Table 5
Mean value (̄ε) and standard deviation (σε ) for the obliquity over 50 Myr to
4 Gyr

T (Myr) ε̄ (◦) σε (◦)
50 34.244 7.149

100 34.068 8.438
250 34.432 9.979
500 35.082 10.977

1000 35.950 11.987
2000 36.779 12.978
3000 37.267 13.499
4000 37.620 13.814

19 solutions of the secular equations were integrated over 4 Gyr with
initial conditions, and for each orbital solution, 501 obliquity solutions w
initial conditions for regularly spaced values ofp ranging fromp0 − δp/2
to p0 + δp/2 were integrated.

Table 6
Numerical examples taken from the data ofFig. 19

T (Myr) 60◦ 65◦ 70◦ 75◦ 80◦

5000 95.35 52.51 8.51 0.270 0.015
3000 89.29 37.38 4.07 0.025
2000 81.47 27.94 2.08 0.005
1000 63.00 13.52 0.36
500 42.16 4.92 0.03
250 24.40 1.03 0.01
100 7.23
50 0.36
25

For each time spanT , we give respectively the probability (in percent) f
the obliquityε to reach 60◦, 65◦ , 70◦, 75◦ , or 80◦. When there is no occur
rence of the event, the corresponding space is left blank.

Fig. 21. Normalized density distribution of the obliquity of Mars, over 50
250, 1000, 2000, 3000, and 4000 Myr. This is obtained with a single s
tion with a sampling time of 1000 yr.

5.4. Diffusion laws

We have seen that the densityfunctions of the eccentricit
(Fig. 18) or obliquity (Fig. 20) over 5 Gyr are smooth func
tions, that evolve with time and differ significantly from pu
Gaussian distributions. In this section, we will look to t
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Fig. 22. Evolution of the mean valuēe (top) and standard deviationσe (bot-
tom) for the eccentricity of Mars. The statistics are made over 20 con
utive intervals of 250 Myr, for 200 orbits with close initial conditions. T
standard deviation is fitted with the lineσe = 0.028678+ 0.001676 log(T )

where the timeT is in Gyr.

evolution with time of these distributions, and analyze
diffusion of the solutions over time. The goal is to establ
some simple formulas that will allow to represent the dist
utions of the eccentricity andobliquity over very long times
of several Gyr. Quite remarkably, although it is impossi
to predict the precise evolution of the individual trajectori
we will be able to give very simple expressions that fit v
well with the observed eccentricity and obliquity distribu-
tions.

5.4.1. Eccentricity
We first have looked at the evolution of the mean value

the eccentricityē and its standard deviationσe over 5 Gyr,
computing these quantities over 20 consecutive interva
250 Myr (Fig. 22). The mean valuēe does not show signifi
cant evolution, but the standard deviation increases ste
and is well fitted with

(11)σe = 0.028678+ 0.001676 log(T ),

where the timeT is expressed in Gyr. In a pure Brownia
motion, the diffusion speeddσ 2/dt is constant, while here
when neglecting the terms in log2(T ) that are small over a
few Gyrs, we have

(12)
dσ 2

e

dT
∝ 1

T
.

The diffusion rate becomes thus very slow asT increases.
Fig. 23. Normalized density function for the eccentricity of Mars on
time interval [4.75 Gyr,5 Gyr] (full line). The dashed line is the best fi
Gaussian distribution, and the dotted line is the best fit with a distribu
of a random walk with an absorbing end at 0 (Eq. (13)).

At the moment, we have no possibility to derive anal
ically the observed density function from the equation
motion, but we have searched for the best possible fit w
a small number of parameters (Fig. 23). As was already ob
served, the Gaussian density is not a good candidate a
observed density goes to zero when the eccentricity go
zero, with a non-zero derivative. In fact, a model that
very well with the density ofthe eccentricity is given by
a one-dimensional random walk with an absorbing edg
zero (see, for example,Grimmett and Stirzaker, 2001). For
such a simple model, the density function is

G̃m̃,σ̃ (x) =
(

exp

(
− (x − m̃)2

2σ̃ 2

)
− exp

(
− (x + m̃)2

2σ̃ 2

))

(13)×
(√

2πσ̃ erf

(
m̃√
2σ̃

))−1

,

where erf(x) is the error function

(14)erf(x) = 2√
π

x∫
0

e−t2
dt.

In Fig. 23, the density functionfe(x) of the eccentricity
on the time interval[4.75 Gyr,5 Gyr] is plotted in full line,
while the dashed line is the best fit with a Gaussian den
Barely visible, as it superposes nearly exactly with the fil
curve, is the best least square approximation offe(x) with
G̃m̃,σ̃ (x), wherem̃ = 0.063831 and̃σ = 0.037436. It should
be noted that the meanma and standard deviationσa for
the density functionG̃m̃,σ̃ (x) are notm̃ and σ̃ , but slightly
different:

(15)ma = m̃

erf(m̃/
√

2σ̃ )

and

(16)σ 2
a = σ̃ 2 + m̃2 − m2

a +
√

2
σ̃ma exp

(
− m̃2

2

)
.

π 2σ̃
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Fig. 24. Evolution with time of the parameters̃m (top) andσ̃ (bottom) of
the eccentricity density distribution given in (Eq. (13)). The linear fits are
made respectively with̃m = 0.069367− 0.001109T and σ̃ = 0.032131+
0.002641 log(T ), where the timeT is in Gyr.

As this densityG̃m̃,σ̃ (x) represents very precisely th
evolution of Mars’ eccentricity from 500 Myr to 5 Gyr, we
have computed the corresponding parametersm̃, σ̃ (Fig. 24)
that can be approximated over[0.5 Gyr,5 Gyr] by

m̃ = 0.069367− 0.001109T ,

(17)σ̃ = 0.032131+ 0.002641 log(T ),

where the timeT is in Gyr. In some sense, the relations(13)
and (17)provide a good predictive model for the eccentric
of Mars beyond 500 Myr.

5.4.2. Obliquity
We have performed the same study for Mars’ obliquity

this case, the analysis was performed for 19 orbital soluti
and for each of them 500 obliquity solutions with close i
tial conditions. The statistics were made over 40 consecu
intervals of 100 Myr. Contrarily to the eccentricity, the mea
obliquity ε̄ presents a slow increase with time as well as
standard deviation that can be well approximated (Fig. 25)
with

ε̄ = 37.007+ 1.345 log(T ),

(18)σε = 13.301+ 1.426 log(T ) − 0.259 log2(T ).

The diffusion of the obliquity thus follows a simila
law as(12) for the eccentricity. In a similar way as wit
the eccentricity, we have plotted the last density fu
tion f40(ε), obtained over the interval[3.9 Gyr,4.0 Gyr]
(Fig. 27, full line). The densityf40(ε) is also far from a
Fig. 25. Evolution of the mean valuēε (top) and standard deviationσε (bot-
tom) for the obliquity of Mars. The statistics are made over 40 consec
intervals of 100 Myr, for about 10,000 orbits with close initial conditio
The mean obliquity is fitted with̄ε = 37.007+1.345 log(T ), while the stan-
dard deviation is fitted withσε = 13.301+ 1.426 log(T ) − 0.259 log2(T ),
whereT is in Gyr.

Fig. 26. Normalized density function for 1− cos(ε) (full line, (a)), where
ε is the obliquity of Mars on the time interval[3.9 Gyr,4 Gyr]. The dotted
line (b) the best fit with the density function given inEq. (19).

Gaussian density (dashed line), although the densityf1(ε)

for [0 Myr,100 Myr] is very similar to a Gaussian densi
In fact the obliquity density of (Fig. 27) is also different from
the density of the eccentricity (Eq. (13)). After some trials,
we found a very good fit off40(ε) with a sine function on
[0◦,40◦]. This led us to search for the density functionfY of
Y = 1− cos(ε) instead ofε (Fig. 26). We have found a ver
good agreement of the observed densityfY with

(19)fm,b(x) = 1

2m

{
erf

(
b(x + m)

) − erf
(
b(x − m)

)}
.



Long term evolution of the insolation of Mars 361

st
sity

s

-

le

y of

fit

t
n
ty.

uity

f

)
e-

al
ical
and
the

ith
,
4

lves,
is-
Fig. 27. Normalized density function for the obliquity (ε) of Mars on the
time interval[3.9 Gyr,4 Gyr] (full line, (a)). The dashed line (b) is the be
fit Gaussian distribution, and the dotted line (c) the best fit with the den
function given in (Eq. (23)). The curve (d) is the density(26)of the uniform
probability on the spherical cap limited byε = εm̃.

This agreement is in fact soprecise that the two curve
are barely distinguishable onFig. 26. The densityfm,b(x) is
in fact the density of|X + Y |, whereX,Y are two indepen
dent random variables. The random variableX has a uniform
density on[−m,m], andY is a centered Gaussian variab
with standard deviation

(20)σ = 1√
2b

.

In fact,fm,b(x) is a density on[0,+∞[, and not on[0,2].
Nevertheless, for the values ofb, m̂, that we will use (b ≈
8, m̂ ≈ 0.5), and forx > 2,

(21)fm,b(x) � 2b√
π

exp
(−b2x2)

and

(22)

2∫
0

fm̂,b(x) dx � erf(2b).

For b = 8, 1 − erf(2b) � 0.23 × 10−112. We can thus
consider, for our practical needs, thatfm,b(x) is a density
on [0,2]. Once we have a good candidate for the densit
1− cos(ε), we obtain easily the density ofε on [0,π] as

Ĝm̂,b(x) = sin(x)

2m̂

{
erf

(
b
[
1− cos(x) + m̂

])
(23)− erf

(
b
[
1− cos(x) − m̂

])}
.

The parameterŝm,b are determined by least square
to the observed density of the obliquity, and we findm̂40 �
0.479, b40 � 7.793. As with the eccentricity, the agreemen
is so good that̂Gm̂,b(x), plotted with a dotted line (label c) i
Fig. 27is barely discernible from the density of the obliqui

We have then determined the parametersm̂, b on each
time interval, but instead of plottinĝm in Fig. 28, we have
preferred to display the corresponding value of the obliq
Fig. 28. Evolution with time of the parameters̃m (top) andb (bottom) of
the obliquity density distribution given inEq. (23). The least square fit o
m̃ is m̃ = 54.515+ 3.726 log(T ) − 0.583 log2(T ). The mean value ofb,
bm = 7.825 is plotted in dotted line.

(εm̂ � 58.622◦ in Fig. 27), given by

(24)εm̂ = arccos(1− m̂).

The value ofb is nearly constant, with mean valuēb =
7.825, whileεm̂ can be approximated by

(25)εm̂ = 54.515+ 3.726 log(T ) − 0.583 log2(T ),

whereT is in Gyr. As for the eccentricity,Eqs. (23) and (25
provide a precise description of the obliquity evolution b
yond 500 Myr. It should be noted that the density (Fig. 27d)

(26)fm̂(x) = sin(x)

m̂
1[0,εm̂](x),

where 1[0,εm̂](x) is the characteristic function of the interv
[0, εm̂], represents also the uniform density on a spher
cap centered on the normal to the orbital plane of Mars,
limited by ε = εm̂, with the usual Lebesgue measure on
sphere.

We can now look back to the evolution of the density w
time given inFigs. 14 and 20. Over a short time (50 Myr)
the obliquity is localized around a mean value of about 3◦,
with a Gaussian density; but as the diffusion process evo
the axis density function will evolve towards a uniform d
tribution on the spherical cap limited byε = εm̂, whereεm̂

is given byEq. (25)or Fig. 28, with an additional random
noise. The distribution of the action variableX = Lcosε, or
equivalently of the precession frequency (∝ cosε), will also
be uniform with the addition of a random noise.
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6. Conclusions

The new orbital and obliquity solution presented here
be used over 10 to 20 Myr for precise paleoclimate stu
on Mars. It is important to recall that the severe increas
obliquity at 5 Myr is robust with respect to the uncertain
on the model and initial conditions. It thus provides a c
straint on the possible past evolution of the martian clima
and in particular on the evolution of the ice caps(Laskar et
al., 2002). The full solution, together with subroutines allo
ing the computation of the insolation for various latitud
derived from the similar routines used for the Earth paleo
mate studies(Laskar et al., 1993)is available on the WEB a
http://www.imcce.fr/Equipes/ASD/mars.html.

The orbital solution of Mars should be precise over ab
40 Myr, much longer than the time of validity of the obli
uity and precession quantities. We have provided as
the nominal orbital solution of Mars over 100 Myr, for re
erence, and as an example of possible evolution, altho
we know that with the problem of numerical roundoff er
alone, the solution has practically no chance to be valid
more than 60 Myr.

Over longer time scale, beyond 100 Myr, the chao
regime prevails, and we cannot give any precise evolutio
the obliquity or of the orbit. Nevertheless, we are able to g
here a very precise estimate of the density function of
obliquity and eccentricity over the age of the Solar System
and have thus in a very concise way all the information
producing statistical estimates of the past climate evolu
of Mars along its history. In particular, beyond 500 Myr, t
density distribution of the axis of Mars tends towards a u
form density on a spherical cap limited byε = εm̂ (Eq. (25)),
with the addition of a random noise that produces a slow
fusion of the obliquity beyondεm̂.

The computations beyond 250 Myr are made with the
eraged equations ofLaskar (1990), but this should not mod
ify significantly the results from a similar study made w
non-averaged equations as the two solutions are very si
over 35 Myr (Figs. 15 and 16). The chaotic behavior of th
inner planets mostly results from their secular interacti
(Laskar, 1990), and the statistics made over the overlapp
250 Myr on the obliquity are very similar (Tables 2 and 5).

It is remarkable that the present value of the obliquity
Mars (ε0 ≈ 25.19◦) is very far from its mean value, eva
uated over 4 Gyr (̄ε ≈ 37.62◦); it is even further from its
most probable value over 4 Gyr,εs ≈ 41.80◦ obtained for
the maximum of the 4 Gyr density ofFig. 20. The situa-
tion is different for the eccentricity, as the mean (ē ≈ 0.069)
and most probable value (es ≈ 0.068) are smaller than th
present value (e0 ≈ 0.093). In the search of the past clima
evolution of Mars, one could thus define the “standard m
el” of Mars as the most probable one, withes = 0.068, εs =
41.80◦.

This suggests that the present dry and cold martian
mate is probably not representative of the past curren
vironmental conditions. Climatic simulations with orbi
r

parameters close to the “standard model” shows that larg
creases in summer insolation may cause dynamical inst
ity of the polar caps and an intensive sublimation multip
ing global atmospheric humidity by a factor∼ 50 (Jakosky
et al., 1995; Richardson and Wilson, 2002; Mischna et
2003). If not limited by a thermally protecting dust la
dramatic annual water loss (estimated close to 10 cm y−1)
would lead to a quick disappearance of polar caps over s
obliquity cycles and to deposition of stable surface ice
equatorial areas(Jakosky et al., 1995). Geomorphologica
features should illustrate this now “current” latter situati
We can expect that conjugated efforts in climate mode
(e.g.,Haberle et al., 2000; Mischna et al., 2003), geomor-
phological observations from present and future spacecra
missions (e.g.,Head and Marchant, 2003) and comparison
with astronomical solutions will improve the reconstruct
of the past “high obliquity” martian climate.
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