Available online at www.sciencedirect.com

sc.ence@n.“m ICARUS

ELSEVIE Icarus 170 (2004) 343-364

www.elsevier.com/locate/icarus

Long term evolution and chaotic diffusion
of the insolation quantities of Mars

J. Laskaf*, A.C.M. Correia?°, M. Gastineag, F. Joutef, B. Levrarc?, P. Robutet

a Astronomie et Systémes Dynamiques, IMCCE-CNRS UMRS8028, 77 Av. Denfert-Rochereau, 75014 Paris, France
b Opservatoire de Genéve, 51 chemin des Maillettes, 1290 Sauver ny, Switzerland
C Departamento de Fisica da Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal

Received 21 November 2003; revised 26 March 2004
Available online 2 June 2004

Abstract

As the obliquity of Mars is stronglchaotic, it is not possible to give a solution for é&golution over more than a few million years. Using
the most recent data for the rotational state of Mars, and a new numaeteglation of the Solar System, we provide here a precise solution
for the evolution of Mars’ spin over 10 to 20 Myr. Over 250 Myr, we present a statistical study of its possible evolution, when considering the
uncertainties in the present rotational state. Over much longer time span, reaching 5 Gyr, chaotic diffusion prevails, and we have performed
an extensive statistical analysis of the orbital and rotational evolution of Mars, relying on Laskar’s secular solution of the Solar System, based
on more than 600 orbital and 200,000 obliquity solutions over 5 Gyr. The density functions of the eccentricity and obliquity are specified
with simple analytical formulas. We found an averaged eccentricity of Mars over 5 Gyr of 0.0690 with standard deviation 0.0299, while the
averaged value of the obliquity is 37 B®ith a standard deviation of 13.82and a maximal value of 82.035We find that the probability
for Mars’ obliquity to have reached more than @6 the past 1 Gyr is 63.0%, and 89.3% in 3 Gyr. Over 4 Gyr, the position of Mars’ axis
is given by a uniform distribution on a spherical cap limited by the obliquity 58.62th the addition of a random noise allowing a slow
diffusion beyond this limit. We can also define a standard model of Mars’ insolation parameters over 4 Gyr with the most probable values
0.068 for the eccentricity and 41.86r the obliquity.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction which include exchange between atmospheric, polar caps,
and regolith reservoirs suggest the possibility of large varia-

The parameters of Mars’ otsand spin axis orientation tionsin atmospheric pressuf@/ard et al., 1974; Tpon etal,

control the global distribution and seasonal intensity of the 1980; Francois et al., 1990; Fanale and Salvail, 1984}

solar insolation, and it is widely accepted that astronomical P€nding on the total inventory of available g@ccasional

variations could have had a profound influence on its cli- OF Prolonged periods of warmer, more clement, climate may

matic history. These changes are probably characterized by’@ve resulted throughout geological hist¢dpkosky et al.,

a redistribution of the major martian volatiles (g@ust and 1995)

water) and variations in their partition between atmospheric, In the same manner, .the transportl and redistribution O,f
surface. and subsurface reservoirs water between ground ice, surface ice, and atmospheric

Because the permanent €@ap is in equilibrium with reservoirs appear to be largely sensitive to orbital parame-

the atmosphere, the martian atmospheric pressure is ver)}erst' Slll”ga%e anbol[ ng?r-ts#rfacili:ﬁ stab .'I'tty IS m?stthstrongly
sensitive to the polar temperature and thereby to obliquity. controfled by obliquity throug € variations of the sur-

. . e face thermal forcing and of the abundance of water va-
Climate models of C@ evolution over obliquity changes por sublimed in summer (e.gMellon and Jakosky, 1995:

Jakosky et al., 1995 Simplified climate models suggest
* Corresponding author. that during periods of high obliquity>( 40°), large quan-
E-mail address: laskar@imcce.fr (J. Laskar). tities of polar ice could be sublimed and transported away
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to the tropical regions where it becomes sta@lakosky
and Carr, 1985; Jakosky et al., 199%uch predictions
were recently confirmed by full three-dimensional climate
simulations(Haberle et al., 2000; Richardson and Wilson,
2000, 2002; Mischna et al., 2003; Levrard et al., 2003)
Conversely, at present obliquities and lower, water ice is ex-
pected to be stable only in the high-latitude areas.

Many geological features provide the possibility of re-
cent orbital-driven climatic changes. The most impressive
is the extensive layering observed in the polar deposits and
thought to contain alternate layers of water ice and dust in
different proportions. Correlation between stratigraphic se-

quences and insolation parameters suggests that polar caps 5,

may preserve climatic records spanning the last few millions
of years(Laskar et al., 2002)Additional morphological ev-
idence may be found in Mars Global Surveyor observations
of suspected recent water (gullies, paleolakes, outflow chan-
nels) or ice-generated (contraction-crack polygons, paleo-
glaciers) landforms (e.gBaker, 2001; Mustard et al., 2001;
Costard et al., 2002; Head and Marchant, 2003

The presence of more ancient equatorial valley networks
and putative oceanic shorelines, which support the occur-
rence of flowing water and different environmental con-
ditions in early Mars (e.g.Baker et al., 199 illustrates
the extreme climate changes that Mars may have under-
gone throughout its geological history. In this context, long-
term evolution and amplitudes of insolation parameters are
a key element to understand the evolution of martian surface
processes.

The history of the computation of the astronomical solu-
tion for the forcing of martian paleoclimates is very similar
to what happened in the Earth’'s case (kmérie and Im-
brie, 1979, but it occurred over a shorter time. The first
climate models took only into consideration the precession
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Fig. 1. Chaotic zone for the obliquity of Mars. Theaxis is the initial oblig-

uity (in degrees) and the-axis is the precession constantin arcsec yr 1.

The regular solutions are represented by small dots, while large black dots
denote the chaotic solutions (adapted frbaskar and Robutel, 1993

dent on the initial precession rate, which was not known
very precisely (se8ection 3.2 The reason for this behavior
was explained when it was demonstrated that the evolution
of Mars’ obliquity is chaotic(Laskar and Robutel, 1993;
Touma and Wisdom, 1993Moreover,(Laskar and Robu-
tel, 1993)provided a global view for the dynamics of Mars’
obliquity, describing the shape and extent of the associated
chaotic zoneFKigs. 1, 13. With this global portrait, and al-

of the axis of the planet, that alters the seasonal contrastthough the computations were only conducted over 45 Myr,

(Leighton and Murray, 1966Murray et al. (1973}hen re-
alized that the change of eccentricity of the planet resulting
from secular planetary perturbations (from 0.004 to 0.141
in the solution ofBrouwer and Van Woerkom (195@hat
was then used), will modify significantly the insolation at
the surface of the planet. The Earth spin axis obliquity un-
dergoes variations of about1.3° around its mean value
(23.3) (Laskar et al., 1993and references therein) that are
now recognized to have a large impact on the past climate
of the Earth (sedmbrie and Imbrie, 1979 Ward (1973,
1974)was the first to realize that the obliquity of Mars suf-
fers much larger variations, due to the proximity of secular
spin orbit resonances. Using the orbital solutiorBoduwer
and Van Woerkom (195@)e found that the obliquitys( of
Mars was oscillating betweery 14.9° and >~ 35.5°. This
solution was later on improved, using the secular orbital so-
lution of Bretagnon (1974 )which led to slightly larger vari-
ations of the obliquityWard, 1979) A significant change
arose with the use of the secular solutiorLatkar (1988)
Using this orbital solutionWard and Rudy (1991jound
that the obliquity evolution of Mars was critically depen-

they concluded that Mars’ obliquity can wander fromt@
more than 60.

Since then, the most significant improvement for the com-
putation of an astronomical solution for martian paleocli-
mate studies is in the determination of the initial precession
rate by the PathfindéFolkner et al., 1997and Mars Global
Surveyor space missior(¥oder et al., 2003)which now
permit a reliable obliquity solution for Mars over a few mil-
lion years.

After the pioneering work ofQuinn et al. (1991) and
Sussman and Wisdom (1992nd with the improvement
of computer speed in the last decade, it becomes now
possible to integrate numerically over hundreds of million
of years (Myr) a dynamical model for the orbital evolu-
tion of the planetary orbits that is close to the ones used
for short time ephemerides computatiorisagkar, 2001;
Laskar et al., 2004; Varadi et al., 200 the first section,
we will present the derivation of the orbital solution for Mars
over 250 Myr using the new symplectic integrator developed
in our group(Laskar and Robutel, 2001particular care is
taken to reduce the roundoff error, and the solution is com-
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pared to the most up-to-date numerical ephemeris DE406relativity corrections of order /2 due to the Sun are in-
(Standish, 1998)The second part is devoted to the pre- cluded followingSaha and Tremaine (1994)

cession and obliquity equations and to the stability of the  The Moon is treated as a separate object. In order to ob-
solutions with respect to the uncertainty of the parameters, tain a realistic evolution of the Earth—-Moon system, we also
and in particular of the initial precession rate. Because of the take into account the most important coefficieft)(in the
chaotic behavior of the obliquity, a precise solution cannot gravitational potential of the Earth and of the Moon, and the
be derived over more than 10 to 20 Myr, but the equations tidal dissipation in the Earth-Moon system. We also inte-
are integrated over 250 Myr in order to establish statistics on grate at the same time the precession and obliquity equations
the possible variations of the obliquity over this time span. for the Earth and the evolution of its rotation period in a com-
In Section 5this analysis is then continued over 5 Gyr. Over prehensive and coherentway, following the linebléfon de
such an extended time, we do not use the direct numerica|5urgy and Laskar (1997) and Correia et al. (20@@)[@ de-

integration, but the secular equationslafskar (1990)af-  tajls on the integration model can be foundiraskar et al.,
ter some small adjustment of the parameters. This allows 2004)

us to increase the computer speed by a factor of 2000 and
to perform more extensive statistics, on both the orbital and
obliquity solutions. We are then able to derive simple an-
alytical expressions that fit emely well with the density o .
distribution of the eccentrity and obliquity over 5 Gyr$ec- In order to minimize the accumulation of roundoff er-
tion 5.4). In this sense, thanks to the chaotic behavior of the or, the numerical integration was performed with the new
solutions, we can make very precise predictions on the oblig- Symplectic integrator schensel BAC4 of Laskar and Robu-
uity and eccentricity evolion beyond 500 Myr, but these tel (2001) with a correction step for the integration of the
predictions are not for the exact values of these quantities, Moon. This integrator is particularly adapted to perturbed
but for their probabilistic density functions. systems where the Hamiltonian governing the equations of
motion can be written on the forrd = A + ¢B, as the
sum of an integrable part (the Keplerian equations of
2. Evolution over 250 Myr the planets orbiting the Sun), and a small perturbation po-
o . ] o tential e B (here the small parameteris of the order of
~ In this first part, we will use a direct numerical integra- e planetary masses). Using this integrator with step size
tion of thg planetary’ orb'ltal'motlon in order to |nvest|gate 7 is then equivalent to integrating exactly a nearby Hamil-
the pehgwor of _Mars obllquny over 250 Myr. As the orbital tonian A, where the method's errdd — A is of the order
motion is chaotic, even Wlt'h a precise dynam|cal model, the of O(z8) + 0(r2¢2), and evenO (z8) + O (r%2) when
computer roundoff numerical error alone will prevent ob-
taining a precise orbital solution for Mars over more than
60 Myr (seeFig. 49. Moreover, the obliquity of Mars itself
is chaotic, even more chaotic than its orbital motfbaskar
and Robutel, 1993; Touma and Wisdom, 199Bhis will
prevent even more drastically obtaining a precise solution for
the obliquity over more than 10 to 20 Myr, with the present
knowledge of the initial parameterSéction 3.2.1L
Our goal in this section will thus be to obtain a solution
for the insolation parameterf Mars as precise as possi-

2.2. Numerical integrator

the correction step is added, while the same quantity is of
the orderO (t2¢) in the widely used symplectic integrator of
Wisdom and Holman (1991and O (z"€) + O (t2%€2?) with
the correctors ofWisdom et al. (1996)

The step size used in most of the integration is 5 x
102 yr = 1.82625 days. The initial conditions of the in-
tegration were least-square adjusted to the JPL ephemeris
DEA406 (Standish, 1998)in order to compensate for small
differences in the model. In particular, we do not take into

ble over 10 to 20 Myr for use in Mars paleoclimate studies. ?hcc_m:nt th? effe.cttcr)]f t?ze Tr:mli/lr planetst, anq the modelm? (t)f
Then, with the same model, to explore the behavior of the € Interactions in the Earth—loon System IS more complete

solutions over 250 Myr and to derive a statistical vision of in DE406 (seéMilliams et al., 200).

this chaotic system. Although no precise prediction is possi- ' Fig- 2ais plotted the evolution of the total energy of
ble over this time interval, we will be able to derive a precise € System from-250to+250 Myr, after the removal of the

estimate of the density probability function for the evolution Secular trend that corresponds to the dissipation in th_elOEarth—
of the eccentricity of Mars and isbliquity. It is in fact para- ~ M0On system. The residuals are smaller tha 2 10
doxical (see, for exampléasota and Mackey, 1994hat it after 250 Myr, and behave as a random walk with a standard
’ 1 . . ~ ~ 16
is actually the chaotic behavior of the system that will al- deviation per stepy ~ 2.7y, whereey ~2.22x 10
low us to make a precise prediction of the evolution of the iS the machine Epsilon in double precisifraskar et al., -
density function of Mars’ orbital and rotational parameters. 2004) The normal component of the angular momentum is
conserved over the same time with a relative error of less
2.1. Orbital motion than 13 x 10~19 (Fig. 2b).
With these settings, the CPU time on a Compaq alpha
The orbital model comprises all 9 main planets of the workstation (833 MHz) is about 24 h for 5 Myr, and a
Solar System, including Pluto. The post-Newtonian general 250 Myr run will last nearly two months.
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2.3. Comparison with DE406 06 | i
03 B
Using a direct numerical integrator, our goal is to provide or 1
. . . 0.3 1 1 1 1 1
along term solution fqr the orblltal and precesspnal elements 2007 4000 3000 2000 -1000 P 1000
of Mars with a precision that is comparable with the usual time after J2000 (yr)

accuracy of a short time ephemeris.

We have thus compared our solution with the most ad- Fig. 3. Differences La2003 DE406 oyer the fgll range of DE406—6QOQ
vanced present numerical integration, DE406, that was itself to +1000 yr from J?OOO) for the _orb|ta| solutlc_)n of Mars_for z_aII elllptlcal

. . . elements ¢, A, ¢, w, i, £2), respectively. The units for semi-major axis) (
adjusted to the observatio(Standish, 1998)n the present are AU, and arcsec for mean longitude),(longitude of perihelion ),
paper, we will only discuss the orbital solution of Mars inclination ¢), and longitude of the ascending node)(from the ecliptic
(Fig. 3. and equinox J2000.

Over the full range of DE406, that is from5000 to
+1000 yr from the present date, the maximum difference in ~ The most recent determination of the solar oblateness
Mars’ longitude is less than.B8 arcsec. These differences (J»), obtained with the SOHO and GONG helioseismic
probably account in large part for the perturbations by the data giveJ, = (2.184 0.06) x 10~ (Pijpers, 1998)with
minor planets that are not taken into account in our computa-a very similar value adopted in DE406(= 2 x 1077,
tions. Over the whole interval, the difference in eccentricity Standish, 1998 while in DE200, it was not taken into ac-
is less than 5 1078, and less than.08 arcsec in inclina-  count(Newhall et al., 1983)Even with this small value, the

tion. absence of the solar oblateness in the dynamical model was
identified in (Laskar, 1999aas one of the main source of
2.4. Variationson the orbital model uncertainty in the long term solution for the Solar System.

We will thus consider that comparing the nominal solution

We will not present here all the wanderings that we had La2003 (with J, = 2 x 10~7) with an alternate solution
in the past years while searclifor a precise model, which ~ (La2003) with J> = 0 is representative of the uncertainty
led us to obtain several intermediate solutions. A general dis- of the dynamical model for our long term integrations.
cussion of the sensitivity of the orbital solution to the model, The results La2003 La2003 for Mars’ eccentricity are
resulting from the chaotic behavior of the solution can be displayed inFig. 4bover 100 Myr. The effect of the, be-
found in (Laskar, 1999a)Although this analysis was done comes noticeable after about 30 Myr (26 Myr were predicted
with the secular equations, the conclusions would probably with an analytical estimate i(Laskar, 19993) and the so-
not be much changed using the complete equations. lution remains very similar over 40 Myr, and totally out of
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phase after 45 Myr. We will thus consider here that 40 Myr
is about the time of validity of our present orbital solution
for Mars.

In Fig. 43 we have also tested the numerical stability of
our numerical integration. This is done by comparison of the
nominal solution La2003 (with stepsize=5 x 103 yr)
with an alternate solution, La2003with the same dynam-
ical model, and a very close stepsizé = 4.8828125x
102 yr. This special value was chosen in order that our out-
put time spark = 1000 yr corresponds to an integer number
(204800) of steps, in order to avoid any interpolation prob-
lems in the check of the numerical accurdégure 4ds thus
a test of the time of validity for the obtention of a precise
numerical solution with a given dynamical model, which is
thus limited here to about 60 Myr.

This limitation of 60 Myr is at present a limitation for
the time of validity of an orbital solution, independently of
the precision of the dynamical model. In order to go beyond
this limit, the only way will be to increase the numerical
accuracy of our computationsy limproving the numerical

0.15 T T T T
0.1 -
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0
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01 F i

-0.15 : : : :
0.15 T T T T

0.1
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0
-0.05
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-0.15 : ' : :
-100 -80
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Fig. 4. Stability of the solution for Mars’ eccentricity. (a) Difference of
the nominal solution La2003 with stepsize=5 x 10~3 yr, and La2003,
obtained witht* = 4.8828125x 10~3 yr. (b) Difference of the nominal
solution with the solution obtained while settidg = O for the Sun (instead
of 2 x 107 in the nominal solution).
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algorithm, or with an extended precision for the number rep-
resentation in the computer. It should be noted that with our
present algorithms, we are much more limited by the preci-
sion of the modelFig. 4b) than by the numerical accuracy
(Fig. 49.

At this point, we need to stress that after showing that the
solution is probably not precise over more than 40 Myr, and
certainly not after 60 Myr, we are going in the remaining
part of this paper to compute solutions over 250 Myr with
the same algorithnHg. 5), and even 5 Gyr with the secular
equations. This is indeed justified, as in this case we will not
pretend to provide the actual solution for the evolution of the
Solar System, but just investigate its possible behavior.

Finally, as it will be shown in the next sections, because
of the strong chaos of the obliquity evolution of Mars, and of
the uncertainties oits initial conditions, the obliquity solu-
tion will only be valid over 10 to 20 Myr, that is over much
less time than the orbital computation. Over such a short
time, the orbital present solution is certainly computed with
a very good accuracy(g. 4b).

3. Precession equations

The equations for the evolution of precession and oblig-
uity of Mars are rather simple, as contrary to the Earth’s
case, the effect of the satellites can be neglected. Indeed, it
was shown bysoldreich (1965)hat when a satellite is close
to its planet, its orbit precesses about the planet’'s equator-
ial plane, as it is the case for Phobos and Deimos. In this
case, the averaged torque exerted by the satellite is zero (see
Laskar, 2004

We suppose here that Mars is an homogeneous rigid body
with moments of inerti]d < B < C and we assume that its
spin axis is also the principal axis of greatest inertia. The
precession/s and obliquitys (Fig. 6) equations for a rigid
planet in the presence of planetary perturbations are given
by (Kinoshita, 1977; Laskar et al., 1993; Néron de Surgy
and Laskar, 1997)

de — —B(1) siny + A(r) cosy,

1
D — g cose — cote (A(r) siny + B(r) cosy) — ZC(t),( )

dt

0.14 T T
0.12 |
0.1
0.08
0.06 |
0.04
0.02
0 |

eccentricity

-250 -200 -150

-100 -50 0

time (Myr)

Fig. 5. The nominal solution La2003 for Mars’ eccentricity over 250 Myr.
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Eq; andE¢; are the mean equator and ecliptic of Mars at dafécq is the
fixed ecliptic of the Earth at Julian date J2000, with equip@xThe general
precession in longitudé is defined by = A — £2. £2 is the longitude of
the node, and the inclination. The angle betweenEg; and Ec; is the
obliquity.
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«a is the “precession constant™: -10 -8 6 -4 2 0
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o=———— " "F,,
2w (ga/1 — €2)3 ) . )
(avl—e?) Fig. 7. Influence of parameter variai. The change (in degrees) observed
wheremg is the solar mass; the gravitational constant, over 10 Ma for the various parameters. (a) Effect of tidal dissipation;

o the rotation rate of the planet, anl; = (2C — A — (b) core-mantle friction; (c) 1& the uncertainty in té initial obliquity;
B)/2C its dynamical ellipticity. For a fast rotating planet (@) 10 the uncertainty in the initial precession angle-

like Mars, E; can be considered as proportionaki®; this

corresponds to hydrostatic equilibrium (see, for example, (seeCorreia et al., 200For the explicit equations). For this
Lambeck, 1980 In this approximationg is thus propor- model, the dissipation is independent of the rotation rate,
tional tow. The quantities4, B, andC describe the driving ~ @nd its amplitude is proportional tp sin(2wAr) ~ k2/Q,
terms due to the secular evolution of the orbital plane of the Where Az is the time delay between the tidal perturbation
planet and are given by the integration of the planetary mo- from the Sun and the consequent deformation of the planet.

tions. We used for the nominal solution La2003 a second Love
numberky = 0.14 and a dissipative fact@ = 50, while for
3.1. Dissipative effects the more recent La2004 solution (s&ection 3.2.pwe used

k2 = 0.149 andQ = 92 from (Yoder et al., 2003)In both
The possible dissipative effects influencing the evolution cases, the tidal contribution remains very small.
of Mars’ spin axis are: tidal dissipation due to the Sun, core—

mantle friction, and climate friction. 3.1.2. Core-mantlefriction
Little is known about the interior of Mars, since there are
3.1.1. Tidal dissipation few geophysical constraints on its internal structure. How-

We have considered the tidal contribution from the Sun, ever, the presence of a core can be inferred by the polar
following the equations given iNéron de Surgy and moment of inertia(Cook, 1977; Zhang, 1994)The exis-
Laskar, 1997; Correia et al., 2003)dal contributions from tence of remnant crustal magnetigAcufia et al., 1999%nd
the satellites Phobos and Deimos can be neglected comparethe best determination of the polar moment of inertia so far
with solar tidegLambeck, 1979; Mignard, 1981As shown (Folkner et al., 1997imply that Mars’ core has substantial
in Fig. 7a the effect of solar tidal dissipation is also very iron and that at least the outer part is ligitbder et al.,
small, as it amounts to less than 0.0G#ter 10 Ma. As a 2003) Because of their different densities, the core and the
consequence, the rotation rate of the planet did not changemantle do not have the same dynamical ellipticity. Since the
very much since the beginning of the Solar System. The precession torques exerted by the Sun on Mars’ core and
choice of the tidal dissipation model is then not very rele- mantle are proportional to this quantity, the two parts tend
vant and we decided to use for Mars a const@ntaodel to precess differently around an axis perpendicular to the or-
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bital plane (this results from Poincaré’s stud@10 on the some orders of magnitude higher, but we see that even for
motion of an inviscid fluid contained in a rotating ellipsoidal v ~ 1 m?s™%, we still haveéems ~ étides The core—mantle
shell). This tendency is more or less counteracted essentiallyfriction effect is then of the @ame order of tidal effects or

by two different interactions produced at the interface: the even weaker.

torque of non-radial inertial pressure forces of the mantle

over the core provoked by the non-spherical shape of their3.1.3. Climate friction

interface; and the torque of thésgous friction between the Climate friction is a positive feedback process between
core and the mantle (e.@prreia et al., 20038 The effect of obliquity variations and the resulting redistribution of vola-
core viscosity in the Earth’s case was treatedlgwartson tiles at the planetary surface that affect its dynamical ellip-
and Roberts (1963) and Roberts and Stewartson (1f@85) ticity. Although a significant fraction of the variations of
low values of viscosity, by linearizing the equations for surface loading is compensated by the visco-elastic adjust-
the viscous boundary layeBusse (1968Yurther studied ment of the internal planetary mass, delayed responses in
the effect of the non-linear advective term in the equa- climatic and viscous relaxation processes may lead to a sec-
tions. The contribution of core—mantle friction to the sec- ular term in the obliquity evolution. Conversely to previous
ular variation of the obliquity is given bgRochester, 1976;  dissipative effects, climate friction not only depends on the

Pais et al., 1999) instantaneous value of the obliquity but also on its dynami-

] a2 coSesine cal evolution.

EX —K——————, (4) The impact of CQ and water caps has been respectively
velCEc @ studied byRubincam (19901993) and Bills (1999using

with (Roberts and Stewartson, 1965; Busse, 1968) linear approximations for the obliquity dynamics and global
CenJv mass redistribution. Because both the volatile response to

= Z'GZT’ () obliquity forcing and martian internal parameters (density,

elasticity, rigidity, viscosity are still poorly constrained,
long-term estimation of the climate friction impact is very
uncertain. Similar analyses suggest that obliquity-oblateness
feedback has probably not changed the Earth’s obliquity by
more than 0.01per Myr during the severe recent Pliocene—
Pleistocene glaciations(0-3 Ma) (Levrard and Laskar,
2003) Since the martian caps are about one order of magni-
tude less massive than the water/ice mass involved in typical
terrestrial ice age, we expect that its impact is negligible over
the last 20 Myr, compared to other sources of uncertainty,
F\nd it was not taken into account in our long-term obliquity
solutions.

Other geophysical processes, such as volcanic events and
uplifts, construction of the large Tharsis province or Hel-
las impact basins, or formation of mass anomalies associ-
ated with mantle convection could have produced changes
of early Mars’ obliquity(Ward et al., 1979)but they do not
affect the recent 20 Myr of martian history.

whereC,., E., and R, are respectively the core’s polar mo-
ment of inertia, dynamical ellipticity and radius;is the
kinematic viscosity andse >~ 0.75 a correcting factor ac-
counting for the elastic deformation of the mantle. The kine-
matic viscosity ¢) is poorly known. Even in the case of
the Earth, its uncertainty covers about 13 orders of mag-
nitude (Lumb and Aldridge, 1991)It can be as small as

v =107 m?s~1 for the Maxwellian relaxation time and
experimental values for liquid metals or as big as=

10° m?s~1 for the damping of the Chandler wobble or atten-
uation of shear waves. The best estimate so far of the actua
value of this parameter is ~ 107 m?s~! (Gans, 1972;
Poirier, 1988) The secular obliquity variations given by ex-
pression(4) are of the same order as the tidal variations for
the highest values of the viscosity and can be neglected for
the best estimations. Indeed, wigh= 100 we compute for
tidal evolution:

étides~ 10™ "arcsecyr?. (6) S
_ 3.2. Initial spin axis orientation
Using R. = 1.68 x 10° m (Yoder et al., 2003)C, = 0.06C
(we computeC, = 8rpreR?/15, with pre~ 7 g cn ) and As the motion of Mars’ spin axis is chaot{taskar and

E. = 0.5E (we computeE./Eq = CRZ/C.R®), we have  Robutel, 1993; Touma and Wisdom, 1998 evolution crit-
for secular obliquity variations resulting from core-mantle jcally depends on its preciseifial conditions. Significant

friction: improvements were made on this determination with the re-
. anT 1 sults of the Pathfinder missiqfolkner et al., 1997)vhich
fomf ~ 1077 Ve -1y ArCSECYT ™ (7) provided some estimates on the determinations of the initial

For weak viscosity like the best estimations for the Earth conditions for the spin of MarsTéble 1. According to their

(v ~ 10°% m?s71), we haveiemt ~ 10 34qes that is, the  paper, this uncertainty represents five times the standard er-
core—mantle friction effect can be neglected with respect to ror (o) obtained during their fitting process to the data. This
solar tides Fig. 7b). Since this parameter is very uncertain, is more than what is usually dones(B but according to the

we can expect that electromagnetic coupling or turbulence authors, this allows for ‘the failure to account for various
to increase friction at the interface between the core andsystematic effects.” We will be thus even more cautious on
the mantle. We can then talk about an effective viscosity these data, and investigate its possible variations updg 10
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Table 1 0 _
Initial conditions from(Folkner et al., 1997) 60
Parameter Value .

— @ 50
Obliquity ¢ (degrees) 2389417(35) o
Nodev (degrees) 333777(14 & 40
Precession ratéy /dr (mas yr 1) —7576(35) °
Rotation ratev (degrees day?) 350.89198521(8) %‘ 30
The uncertainty is given in parentlessin the units of the last displayed %_ 20
digit. ©

10

that is 3p, aroundpo where 0
po = —7.576 arcsecyr?, 70
§p = 0.035 arcsec yi (8) T
are the initial value of the precession rate and its uncertainty — __
giveninTable 1 3 50 .82

First of all, we will show that the uncertainty on the ini- > 40
tial position of the pole axis is sufficiently small and does not 3’;
induce significant changes in the solution. We have thus run ‘g 30
some numerical integrations with a deviation of 10 times this 3 20
uncertainty in both the initial obliquityHig. 7¢ and preces- °
sion angle Fig. 7d. In both cases, the maximum difference 10
with respect to the nominal solution is less than 00éfter

10 Myr, and thus negligible, compared to other uncertainties.

time (Ma)

3.2.1. Precession constant
In fact, the main source of uncertainty in the long term Fig. 8. Variations in the obliquity solution due to the uncertainty in the pre-
evolution of the obliquity of Mars is the uncertainty in the cession frequency. In (a), 1001 solutions of the obliquity are computed, with

initial precession rate of Mars. Nevertheless, even when be- "2 Precession values ranging from — 3p/2 0 po+ ép/2 with an even
stepsize. In (b) the same analysis is made with 401 solutions with initial pre-

ing pessimistic with respect to the accuracy of the published .ession values ranging frop — 28p 10 po + 25p. The maximumt; and
determination Table ), the situation after the Pathfinder  minimumm, envelopes over 1 Myr are computed for each solutiofihe
mission is much improved, and it is now possible to derive plotted curves are therf; = max(My), So = max(my), S3 = min(My),
results over 10 Myr with confidence. In order to test the sta- S4=min(n).

bility of the obliquity solution with respect to the uncertainty

8p of the initial precession frequengy, we have integrated ~ certainty on the precession frequeneys 25p, the solution
401 different solutions over 100 Myr, using always as an in- for the obliquity cannot be precise over more than 10 Myr.
put the same orbital solution, and with an initial precession ~ We have repeated the same experience with a more op-
frequencyp; = po + k x 8p/100, fork = —200,..., 200. timistic view, with an initial precession frequenqy, =
The different solutions are very similar in the vicinity of po + k x 8p/1000, fork = —500, ..., 500, that is on the
the origin, but after a few millions of years, they diverge interval po —38p/2, po + 8p/2. In this case, the variation of
significantly, as a result of the chaotic behavior of the spin the obliquity also ranges fronGo more than 69, but the
precession, resulting from the secular perturbations of the solution appears to be valid over nearly 20 Migigf. 89.

other planet¢Laskar and Robutel, 1993) Depending on the reliability of the uncertainty gmn

In Fig. 8h we have summarized the obliquity evolu- given in Table 1 we can thus provide a reliable solution
tion of all these solutions. For each solutiep(r), (k = for the obliquity of Mars over 10 to 20 Myr. The nominal
—200,...,200, we have computed the maximumy (¢) solution (denoted La2003) can be retrieved from the Web

and minimal valuem,(¢) reached by the obliquity over sitehttp://www.imcce.fr/Equdes/ASD/mars.htnifom —20

1 Myr. We have then taken the upper and lower envelopesto +10 Myr (Fig. 9) together with the subroutine for the

of these curves. The 4 curves are thus (in decreasing value atcomputation of the various insolation quantities following

100 Myr) S1 = Max(My), Sz = Max(my), S3 = Min(My), Laskar et al. (1993)This is the solution that was used for the

S4 = Min(my). They represent the extreme variations of the paleoclimate analysis of Mars polar cap layerg¢liaskar et

obliquity over 100 Myr. As was first shown ifLaskar and al., 2002) A very important constraint in this analysis was

Robutel, 1993)the variation of the obliquity ranges from 0  the observation that despite the uncertainty of the precession

to more than 60. constant, and even using;2for this uncertainty, all the so-
The differences of the curves, Sz and S», S4 represent  lutions presented a large increase of the obliquity at 5 Myr

the variability of the solutions. It is thus clear that if the un- (Figs. 8b, 10, already observed in some solutions\iard
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Fig. 9. Obliquity (in degrees) of the nominal solution La2003 fres20 to g 0.08
+10 Myr. § 0.06 | |
S 0.04 — .
and Rudy (1991) and Touma and Wisdom (1998)ose ef- 0.02 1
fect should have been noticeable on the ice record. '
0.00
3.2.2. The solution La2004 500
. . . . 450
The previous discussion demonstrates the importance of C 400
a better determination of Mars’ initial precession rate, as 8 g5,
this will be the only way to extend further our knowledge § 300 |
of the past insolation on the planet. We will thus be at- £ 9250
tentive to the next space missions to Mars with geodesic 200
studies. The Netlander mission, initially projected in 2005, 150
is a very good candidate for this gq@arriot et al., 2001) 100_20 15 10 P 5 5 10
One should consider that the determination with only the fime (My?)

Viking mission gavep = —7.83+ 0.3 arcsecyr! (proba-

bly 30) (Yoder and Standish, 1997yhile the addition of Fig. 10. Obliquity (in degrees) (a), eccentricity (b), and insolation (c) (in
the Pathfinder mission gaye= —7.576+0.035 arcsec le watt m2) at the north pole surface at the summer solstice £ 90°) for
(50). More recently, using the Mars Global Surveyor data, the solution La2004 from-20 to+10 Myr.

Yoder et al. (2003gave a new determination of the pre-

cession constant gs = —7.5974+ 0.025 arcsecyr. The o ]

uncertainty is still &, and is slightly improved with respect ~ the offsetinp in units ofsp/100. In the labels, “Pxxx” corre-
to the previous determination. We have thus updated our so-SPONds to an initial precession rate= po 4 Xxx x 5p/1000,
lution using these new data. Moreovésder et al. (2003) ~ and “Nxxx” t0 p = po — xxx x §p/1000. The solution
give also an improved determination of the tidal coefficients “301003BIN_A.P000" s thus the nominal solution La2003.
ko = 0.149+ 0.017 andQ = 92+ 11 that are differentfrom Al the solutions in this figure are thus withjg & 6p/5 and
the values of our nominal solutiotf= 0.14 andQ = 50). can be considered as equiprobable. They represent the va-
As the tidal dissipation is very smalFig. 7), this has no  riety of all the computed 1001 solutions, and some typical
noticeable effect on the solution, but we have updated theseb€ehavior.

data to their new values as well. The resulting solution will ~In particular, we put in this plot the two solutions with
thus be called La2004, and will be provided as well on our closest initial conditionspo & §p/1000 from the nom-
Websitehttp://www.imcce.fr/Equies/ASD/mars.html inal solution, and one can thus very well understand,

The difference of the two solutions over 20 Myr is small by looking at the very different behavior of the three
(compareFigs. 9 and 10g and we have not done again solutions “301003BIN_A.NOO1,” “301003BIN_A.P000,"
the previous stability analysis with the updated values of “301003BIN_A.P001,"that it will be very difficult to predict
La2004. The solution La2004 for the obliquity, eccentric- precisely the past evolution of Mars’ obliquity over more
ity, and insolation in summer at the North pole is given in than afew tens of millions of years. We are thus left with the
Fig. 10 only possibility; that is, to search for the possible behavior

of the obliquity in the past. We will first look to the maxi-

mum possible variations of the obliquity, and then to its most
4. Variationsover 250 Ma probable evolution, by computing a density function for the

main factors of the climate variation, the obliquity and the

We have plotted irfFig. 11several examples of the solu- eccentricity. The longitude gberihelion from the moving
tions obtained by changing the initial precession jatey a equinox is also important for the determination of the inso-
small amount. In this figure, éhlabel of each panelindicates lation on the surface of the planet, but after a few millions
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Fig. 11. Examples of possible evolution of Mars’ obliquity over the past 250 Myr.
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Fig. 12. The probability (vertical axis) of reaching a given obliquity (hor-
izontal axis) after a specified time is given by the different curves, for 3,
5, 10, 25, 50, 100, and 250 Myr. The estimate is obtained by 1001 integra-
tions for regularly spaced values pfranging frompg — 8p/2 arcsec yr!

to po+46p/2 (Eq. (8).

of years, we can assume that it will be entirely randomized
over[0, 2r].

4.1. Maximum variations over 250 Ma
As we cannot display the 1001 examples that we com-

puted, with p € [po — 8p/2, po + 8p/2], for the possible
obliquity evolution over 250 Myr, we have summarized all
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spond to a smooth part of this curve, while chaotic regions
will occur when the frequency curve is not regular.

The chaotic zone is divided essentially in two boxes
B1, B2, that appear clearly ofigs. 13a, 13bThe first box
B2 ranges from about 20to 5¢°, while B1 extents from
about 30 to 60° (the actual size of these boxes can be mea-
sured on the ordinate axis &ig. 13h. B1 mostly results
from the secular perturbations related togheecular proper
mode related to Mercury, whil82 is mostly due to, that
is related to Venus. Each of these two moelgs, is asso-
ciated to multiple side termd={g. 139 resulting from the
complex behavior of the orbital motion of the inner Solar
System, and in particular from the presence of the secular
resonance associated witdy — gs) — (s1 — s2) (seeLaskar,
1990 for more details). As a consequence for the oblig-
uity, all the resonances with these side terms will overlap,
and thus increase the chaotic zone arosna@nd s. In-
side B1 or B2, the chaotic diffusion is large, and the zone
is completely explored in a relatively short time, but the
communication between the two boxes is more difficult. Oc-
casionally, a trajectory initially inB2 will find the door to
B1, and its obliquity will each values larger than SBut
as itis now in theB1 box, the strong chaotic diffusion of this
box will lead the solution very rapidly to more than’6®e-
yond 60, the frequency curve is more regular, but still not
completely smooth. We can thus expect some slow diffusion
to higher values of the obliquity. Moreover, the frequency
map of Fig. 13ais obtained over a relatively short time.

the different cases by computing the maximum obliquity Over longer times the slow diffusion of the orbital solution
reached by the different solutions over a given prescribed itSelf will change slightly the values of the main frequencies
time. The results are then transcribed in terms of probability (Laskar, 1990)and the chaotic zones will be displaced, thus

to reach a given obliquity before a given tinféd. 12.
For 3, 5, or 10 Myr, the plotted curve is nearly a vertical
line. This reflects the fact that, over 10 Myr, all the solutions

sweeping a larger aréa.

4.3. Obliquity statistics over 250 Myr

are very close to each other, and behave in the same way.

So they all reach 35before 3 Myr, remain below 40until
5 Myr, and then reach about 4Before 10 Myr.

After 10 Myr, the situation is different, as due to the
chaaotic diffusion of the trajectories, some of them will reach
high values of the obliquity. We observe that over 25 Myr,
the effect of chaos is already visible, and some of the or-
bits reach 50. After 100 Myr, a significant part of the orbits
(about 13%) went beyond 60

4.2. The chaotic zone

In Fig. 12 it appears that when the obliquity reaches,55
then it rapidly reaches 60as well. This can be understood
by looking to the shape of the chaotic zone for Mars oblig-
uity (Fig. 13) This plot (adapted frorhaskar and Robutel,
1993, and Laskar, 1996s obtained using Frequency Map
analysis Laskar, 1990, 1999b)n Fig. 133 a refined de-
termination of the precession frequengy(in arcsecyr?)
is plotted versus the initial obliquity (in degrees). It can be
shown (Laskar, 1999b}hat regular trajectories will corre-

The maximum value reaeld by the obliquity Fig. 12
is an important quantity, as even if these extreme situations
(like ¢ > 60°) may not last for a long time, they could in-
duce important effects on the martian climate evolution. But
now we will look for the most probable situation, by comput-
ing the density distribution of the obliquity over various time
spans for all our 1001 solutions. For this purpose, we have
sampled all these solutions with a sampling rate of 5000 yr,
and plotted the normalized density functign(e) over suc-
cessive time spariB = 3, 50, 100, 250 Myr (Fig. 14).

It is striking to see that over relatively short time inter-
val, as 3 Myr, when the chaotic behavior is not noticeable,
the distribution is very irregular, but as the time inter¥al
increases, the density functigir (¢) becomes very smooth

1 In their integrations,Touma and Wisdom (1993pund that Mars’
obliquity only increases up to 49This can be easily understood with the
help of Fig. 13 Most probably, the solutions explored by Touma and Wis-
dom remained only irB2 during their limited integration time.
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Fig. 13. Frequency analysis of Mars’ obliquity. (a) The frequency map &imdd by reporting in the ordinateetivalue of the precession frequencytaibed

for each of the 1000 integrations over 56 Myr for the different values afitial obliquity (abscissa). A large chaotic zone is visible, rangingTi® to about

60°, with two distinct zones of large chaaBl andB2. (b) Maximum and minimum values of the obliquity reached over 56 Myr. In (c), the power spectrum
of the orbital forcing termA + i B (Eq. (2) is given in logarithmic scale, showing the corresponéeaicthe chaotic zone with the main secular frequencies
51,82, 57, sg (@adapted fronLaskar and Robutel, 1993, and Laskar, 1996

and very close to a pure Gaussian denéity » (x) Table 2
5 Statistics for the obliquity evolution over 250 Myr

1 (x — m) o o] o (© o]
Gpo(x)= \/— exp _? (9) T (Myr) em (°) em (%) € () oe (°)
_ 2o 7 o . 3 35218 15009 25254 4992
with mean valuen and standard deviatioa. Indeed, in 5 38411 13578 26874 5845
Fig. 14 the obliquity distribution is plotted in full line, while 10 46859 13578 31468 7187
we plotted in dashed line the Gaussian distributibn , (x) ;g ;‘igﬁi 122;3 :iig 3(5);‘3
with meanm = & and_standard deviatiot = 0. The cor- 100 64898 2014 24199 8354
responding values far ando, over the various values df 250 66154 0043 34643 2966

are given inTable 2 Maximum (), minimum ,,,), average &), and standard deviatior)

of the obliquity are given over different time intervals (col. 1). The nominal
orbital solution is used, and the statistics are performed over 1001 obliquity
solutions with initial conditions for regularly spaced valuespofanging
from pg — 8p/2 10 pg + 8p/2.

Now, we will analyze the possible evolution of the orbital
and precessional solution over 5 Gyr, that is, over a time regions of the phase space. We thus expect that the diffusion
comparable to the age of the Solar System. Over this time of the planetary trajectories will lead to a larger diffusion of
span, we will be able better to understand the effect of the the obliquity.
slow chaotic diffusion of the orbital motion of the Solar Sys-
tem.

Indeed, when the main secular frequencies of the orbital
motion will change, as a result of the chaotic diffusion, the In order to investigate the diffusion of the orbits over
chaotic region in the frequency spaégég. 13 will be mod- 5 Gyr, we will use the secular equationslaiskar (1990)
ified, and the obliquity may enter more easily in alternate with some small modifications. The secular equations are

5. Diffusion over 5 Gyr

5.1. The secular equations
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01 ' " 3Ma — trix that was originally derived by Lagrange and Laplace to
0.08 [ 7 demonstrate that at first order, the Solar System is stable,
0.06 4 while @3(w, w) and®s(w, w) gather the terms of degree 3
0.04 L | and 5.

The system of equations thus obtained contains some
0.02 - \ i 150,000 terms, but can be considered as a simplified system,
o 11) = —~4 : : as its main frequencies are now the precession frequencies of
' o 50Ma — the orbits of the planets, and no longer comprise their orbital
0.08 - 7 periods. The full system can thus be numerically integrated
0.06 | ’ 4 with a very large stepsize of 200 to 500 yr. Contributions due
0.04 1 ) to the secular perturbation of the Moon and general relativity
are also included (sdeaskar, 1990, 1996or more details
0.02 - ] and references).
0 ' This secular system is then simplified and reduced to

0.1 ' about 50,000 terms, after neglecting terms of very small
0.08 |- 7 value(Laskar, 1994)Finally, a small correction of the terms
0.06 , of the matrixI™ of (10), after diagonalization, is performed

in order to adjust the linear frequencies, in a similar way as
0.04 | - ) ) .
it was done in(Laskar, 1990)Indeed, in the outer planetary
0.02 - iy system, terms of higher order are of some importance, but
0 their effect will mainly be slightly to modify the values of

01 ' ' " o50Ma — the main frequencies of the system. The correction that is

0.08 |- . done here is a simple way to correct for this effect.
0.06 | 4 The original solutions oEaskar (1990pre very close to
0.04 - i the direct numerical integration La2003 over 10 to 20 Myr
™~ (Laskar et al., 2004With the present small adjustment, we
0.02 - - iy obtain a significant improvement, and the solutions are very
0 — ' ' L close over about 35 MyiHigs. 15, 16. It should be noted

0 10 20 30 40 50 60 70
obliquity (degrees)

that this time is also about the time over which the numeri-
cal solution itself is valid Fig. 4), due to the imperfections
Fig. 14. Normalized density function for the obliquity of Mars over 3, 50, Of the model. Moreover, as the stepsize used in the secu-
100, and 250 Myr (full lines). The dashed lines are the best fit with a lar equations is 200 yr instead of 1.82625 days, over very
Gaussian density. long times the numerical noise will be smaller. It is thus
legitimate to investigate the diffusion of the orbital motion
obtained by averaging the equations of motion over the fastover long times using the secular equations. The major ad-
angles that are the mean longitudes of the planets. Indeedyantage, besides reducing the roundoff errors, resides in the
due to the degeneracy of the Keplerian problem, the othercomputation speed: the integration of the secular equations
coordinate angles (longitudeof the perihelion and node) is 2000 times faster than the integration of the non-averaged
evolve much more slowly, as their motion results uniquely equations, and we can compute a 5 Gyr solution for the
from the mutual planetary peroations, and the perturba- Solar System in 12 hours on a Compagq alpha workstation
tion of the pure Newtonian point mass attraction of the Sun (833 MHz). We will thus be able to make statistics over
from general relativity and quadrupole moment of the Sun. many solutions with close initial conditions. In these com-
The averaging of the equation of motion is obtained by ex- putations, our main limitation will be in the huge amount of
panding the perturbations of the Keplerian orbits in Fourier data generated by these numerical integrations.
series of the angles, where the coefficients themselves are
expanded in series of the eccentricities and inclinations. This5.2. Eccentricity
averaging process was conducted in a very extensive way, up
to second order with respect to the masses, and through de- We have integrated first 403 orbital solutions, retaining
gree 5 in eccentricity and inclation, leading to truncated  only the largest values reached by the eccentricity. The re-

secular equations of the Solar System of the form sults of the maximum eccentricity reached after 25, 100,
250, 500, 1000, 2000, and 5000 Myr are givefig. 17. As

dw - m{pw + ®3(w, W) + Ps(w, )}, (10) expected in a diffusive paess, the maximum value reached

dt by the eccentricity inarases slowly with time.

wherew = (z1,...,28,¢1,...,(8), With zx = ex explawy), We have also performed 200 orbital solutions, retain-

&k = Sin(ix/2) exp($2x) (wy is the longitude of the perihe-  ing the values of the eccentitig with a sampling rate of
lion). The 16x 16 matrix I" is similar to the linear ma- 25,000 yr in order to establish the density distribution of
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Fig. 16. Inclination of Mars over 40 Myr (in degrees, referred to tHg#c J2000). The full line is the pure numerical solution La2003, while théedaine
is obtained with the secular equations frfinaskar, 1990, 1994Eq. (10). The two solutions are quasi-identical over 32 to 36 Myr.

the eccentricity over different time spanBid. 18. It is sion is dominant, while over 25 Myr, where the motion is
striking that the density function converges towards a very very predictable, the density distribution cannot be approxi-
smooth density function beyond 1 Gyr, as the chaotic diffu- mated by a simple function. The associated mean vah)es (
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100
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probability (percent)

18

0.16 0.17 0. 0.19
eccentricity

0.14 0.2 0.21

Fig. 17. The probability (vertical axis) of reaching a given eccentricity (hor-

izontal axis) after a specified time is given by the different curves, for 25,
100, 250, 500, 1000, 2000, 5000 Myr. The estimate is obtained with 403
different orbital solutions of the secular equations.

20 T

25Ma
15 | -

0 1 1 1
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eccentricity

0.15 0.2

Fig. 18. Normalized density function for the eccentricity of Mars over 25,
250, 1000, and 5000 Myr. For 250 Myr, the dotted line is the density ob-
tained over the pure numerical solution La2003.

and standard deviations,) of the eccentricity distributions
are given inTable 3
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Table 3
Statistics for the eccentricity evolution over 5 Gyr
T (Myr) e Oe
25 0.066765 0025551
100 0069046 0025592
250 Q069664 0026361
500 0069430 0026914
1000 0068936 0027725
2000 0068754 0028602
5000 0068989 0029937

400 solutions of the secular equations are integrated over 5 Gyr with close
initial conditions.

Table 4

Maximal and minimal values reached by the obliquity over 5 Gyr
T (Myr) em (°) em (°)
5 38442 13594
10 46907 13594
25 50310 13594
50 62274 3786
100 65874 0014
250 70508 Q001
500 72543 Q001
1000 74678 Q000
2000 76005 Q000
3000 79465 Q000
5000 82035 Q000

200 solutions of the secular equations were integrated over 5 Gyr with close
initial conditions, and for each orbital solution, 1001 obliquity solutions
with initial conditions for regularly spaced values pfranging frompg —

8p/2 1o pg + 8p/2 were integrated.

In Fig. 18 even if the density function of the eccentricity
over 5000 Gyr is very smooth, it appears to be slightly differ-
ent from a true Gaussian function. In particular, the density
goes to zero for zero eccentricity, with a linear behavior near
the origin. This will be discussed fBection 5.4.1

5.3. Obliquity

We have done the same analysis for the obliquity over
5 Gyr, with 1001 solutions of the obliquity, for each of the
200 orbital solutions, integted with close initial conditions.
The maximum obliquity reached after 10, 25, 50, 100, 250,
500, 1000, 2000, 3000, 5000 Myr are givermables 4 and 6
and inFig. 19

The density function for the obliquity over 50, 100, 250,
500, 1000, 2000, 3000, 4000 Myr is displayedFig. 20,
and the corresponding mean valdeand standard deviation
o, are given inTable 5

The maximal value reachdu/ the obliquity is 82.03%
although the probability to reach more thar? 8er 5 Gyr is
only 0.015% Table §. More realistically, there are still 4%
of the solutions that went beyond 77 less than 3 Gyr. In
these cases, the orbits were able to find their way in the zone
of chaotic small diffusion between the resonangeandsz
(Fig. 13. Finally, we are nearly certain that the obliquity
of Mars went to higher values than %@during its history,
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100 T
;0 ma Table 5
53 Mg Mean value £§) and standard deviatiomy) for the obliquity over 50 Myr to
= 80} 100 Ma -- J 4 Gyr
o a o T (Myr 3
3 1000 Ma (Myr) £ (°) o (°)
< gl %888 Ma ffffff | 50 34244 7149
= 5000 Ma 100 34068 8438
§ 250 34432 9979
ST | 500 35082 10977
1000 35950 11987
2000 36779 12978
20 ] 3000 37267 13499
4000 37620 13814
o R k 19 solutions of the secular equations were integrated over 4 Gyr with close
45 55 60 65 70 75 80 initial conditions, and for each orbital solution, 501 obliquity solutions with

initial conditions for regularly spaced values pfranging frompg — §p/2

obliquity (degrees .
quity (degrees) to po + 8p/2 were integrated.

Fig. 19. The probability (vertical axis) of reaching a given obliquity (hori-
zontal axis) after a specified time if given by the different curves, for 10, 25, Taple 6

100, 250, 500, 1000, 2000, 3000, 5000 Myr. The estimate is obtained with Nymerical examples taken from the dateFig. 19
200 different orbital solutions, with, for each of them, 1001 integrations for

regularly spaced values @franging frompg — §p/2 to pg + 8p/2. T (Myn) 60° 65° % IS 80°
5000 9535 5251 851 0270 Q015
3000 8929 3738 407 0025
0.06 w w w w w w w 2000 8147 2794 208 0005
) 188 mg o 1000 6300 1352 036
0.05 250 Ma -~ A 500 4216 492 0.03
500 Ma - 250 2440 103 001
1000 Ma 100 723
0.04 r 2000 Ma ------- 1 50 036
3000 Ma -~ 25
4000 Ma - - - —
0.03 1 For each time spaffi, we give respectively the probability (in percent) for
the obliquitye to reach 60, 65°, 70°, 75°, or 80°. When there is no occur-
002 | rence of the event, the corresponding space is left blank.
0.06 T
0.01 1 50 Ma -
250 Ma
L . 0.05 1000 Ma 1
Q et L L L E— 2000 Ma -------
0 10 20 30 40 50 60 70 80 3000 Ma -
0.04 4000 Ma 1

obliquity (deg)

Fig. 20. Normalized density distriion of the obliquity of Mars, over 50, 0.03
100, 250, 500, 1000, 2000, 3000, and 4000 Myr. This is obtained with 19
different orbital solutions, and for each of them 501 obliquity solutions, g g2
with a sampling time of 1000 yr.

0.01

as 95% of the solutions reachdis value. Closer to the e
present, the probability to have reached @&@fore 1 Gyr 0 0 10
is about 63%.

In Fig. 21, the similar quantities are plotted for a single
solution of the obliquity. In this case, the density function Fig. 21. Normalized density distrition of the obliquity of Mars, over 50,
of the obliquity is very different, as over 4 Gyr (full line), 250, 1000, 2000, 3000, and 4000 Myr. This is obtained with a single solu-
it has two distinct maxima. Indeed, the individual solutions tion with a sampling time of 1000 yr.
can present very different behavior, and in the present case, it
appears that the solution remained for a long time in the first 5.4. Diffusion laws
“box” B1 related to secular resonances withand also for
a long period in the “box’B2 related tasp, but never much We have seen that the dendityictions of the eccentricity
in between (se€ig. 13. When the statistics are made over (Fig. 18 or obliquity (Fig. 20 over 5 Gyr are smooth func-
many orbital solutions, thegegions will be displaced, and tions, that evolve with time and differ significantly from pure
the repartition of the obliquity will become more even. Gaussian distributions. In this section, we will look to the

20 30 40 50 60 70 80
obliquity (degrees)
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Fig. 22. Evolution of the mean value(top) and standard deviatien (bot-

tom) for the eccentricity of Mars. The statistics are made over 20 consec-

utive intervals of 250 Myr, for 200 orbits with close initial conditions. The
standard deviation is fitted with the lirg = 0.028678+ 0.001676lodT)
where the timef" is in Gyr.

evolution with time of these distributions, and analyze the
diffusion of the solutions over time. The goal is to establish
some simple formulas that will allow to represent the distrib-
utions of the eccentricity anabliquity over very long times,

of several Gyr. Quite remarkably, although it is impossible
to predict the precise evolution of the individual trajectories,
we will be able to give very simple expressions that fit very
well with the observed eccentifg and obliquity distribu-
tions.

5.4.1. Eccentricity

We first have looked at the evolution of the mean value of

the eccentricitye and its standard deviatian over 5 Gyr,

computing these quantities over 20 consecutive intervals of

250 Myr (Fig. 22. The mean valué does not show signifi-

cant evolution, but the standard deviation increases steadily

and is well fitted with

0. = 0.028678+ 0.001676 logT), (11)

where the timeT is expressed in Gyr. In a pure Brownian
motion, the diffusion speedo?/d: is constant, while here,
when neglecting the terms in 16g") that are small over a
few Gyrs, we have

do? 1
dT

) 12
o (12)
The diffusion rate becomes thus very slowragscreases.
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Fig. 23. Normalized density function for the eccentricity of Mars on the
time interval [4.75 Gyr, 5 Gyr] (full line). The dashed line is the best fit
Gaussian distribution, and the dotted line is the best fit with a distribution
of a random walk with an absorbing end atfy( (13).

At the moment, we have no possibility to derive analyt-
ically the observed density function from the equation of
motion, but we have searched for the best possible fit with
a small number of parametefSig. 23. As was already ob-
served, the Gaussian density is not a good candidate as the
observed density goes to zero when the eccentricity goes to
zero, with a non-zero derivative. In fact, a model that fits
very well with the density othe eccentricity is given by
a one-dimensional random walk with an absorbing edge at
zero (see, for exampl&rimmett and Stirzaker, 200.1For
such a simple model, the density function is

- B (x — )2 (x +1i)?
Giastor= (e~ g -0
- -1
x (@a erf(%)) : (13)
where erfx) is the error function
erf(x) = % / e dr. (14)
0

In Fig. 23 the density functiory, (x) of the eccentricity
on the time interval4.75 Gyr, 5 Gyr] is plotted in full line,
while the dashed line is the best fit with a Gaussian density.
Barely visible, as it superposes nearly exactly with the filled
curve, is the best least square approximatiorfak) with
G,ﬂ,(}(x), wherem = 0.063831 andr = 0.037436. It should
be noted that the mean, and standard deviatios, for
the density functiorf;,ﬂ,&(x) are notm anda, but slightly
different:

m
mg=—— 15
erf(ii /v/26) (13)
and
2 ~2
Ua2=62~|—n~12—m£2l~|—,/—6maex —-—— (16)
T 262
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Fig. 24. Evolution with time of the parameteis (top) ands (bottom) of
the eccentricity density distribution given ikq. (13). The linear fits are
made respectively witi = 0.069367— 0.001109" andé = 0.032131+
0.0026411odT), where the time" is in Gyr.

tom) for the obliquity of Mars. The statistics are made over 40 consecutive
intervals of 100 Myr, for about 10,000 orbits with close initial conditions.
The mean obliquity is fitted with = 37.007+ 1.345logT'), while the stan-
dard deviation is fitted withr, = 13.301+ 1.426logT) — 0.25910¢?(T),
whereT is in Gyr.

25 T T T T
As this densityG,; ;(x) represents very precisely the b
evolution of Mars’ eccentrity from 500 Myr to 5 Gyr, we 20 i
have computed the corresponding parameie®® (Fig. 24
that can be approximated o&:5 Gyr, 5 Gyr] by 15 ]
m = 0.069367— 0.001109",
& = 0.032131+ 0.002641 logT), (17) 10 T
where the timel" is in Gyr. In some sense, the relatiqiis) 05 i
and (17)provide a good predictive model for the eccentricity
of Mars beyond 500 Myr. 00 .
0 0.2 0.4 0.6 0.8 1
5.4.2. Obliquity 1-cos(eps)

We have performed the same study for Mars’ obliquity. In

this case, the analysis was performed for 19 orbital solutions, Fig. 26. Normalized density function for- coge) (full line, (a)), where
and for each of them 500 obliquity solutions with close ini- ¢ i the obliquity of Mars on the time interviB.9 Gyr. 4 Gyr]. The dotted
tial conditions. The statistics were made over 40 consecutive " (?) the bestfitwith the density function giventg. (19)

intervals of 100 Myr. Contrély to the eccentricity, the mean

obliquity & prgsgnts a slow increase with time as_well asits sayussian density (dashed line), although the dengity)
standard deviation that can be well approximateid.(29 for [0 Myr, 100 Myr] is very similar to a Gaussian density.
with In fact the obliquity density offig. 27) is also different from
the density of the eccentricitye@l. (13). After some trials,
we found a very good fit off40(¢) with a sine function on
[0°, 40°]. This led us to search for the density functignof
Y =1 - co9e) instead of: (Fig. 26). We have found a very
good agreement of the observed dengitywith

£ =37.007+ 1.345logT),
o, = 13301+ 1.426log T) — 0.259 lod(T). (18)

The diffusion of the obliquity thus follows a similar
law as(12) for the eccentricity. In a similar way as with
the eccentricity, we have plotted the last density func-
tion fa0(e), obtained over the intervdB.9 Gyr, 4.0 Gyr]

19
(Fig. 27, full line). The density f40(¢) is also far from a (19)

s 06) = o erf(bCx +m) — erf(bx —m)}.
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Fig. 27. Normalized density function for the obliquity) (of Mars on the
time interval[3.9 Gyr, 4 Gyr] (full line, (a)). The dashed line (b) is the best
fit Gaussian distribution, and the dotted line (c) the best fit with the density
function given in Eq. (23). The curve (d) is the densi{26) of the uniform
probability on the spherical cap limited by=¢; .

This agreement is in fact gorecise that the two curves
are barely distinguishable dtig. 26 The densityf;, »(x) is
in fact the density of X + Y|, whereX, Y are two indepen-
dent random variables. The random varia¥leas a uniform
density on[—m, m], andY is a centered Gaussian variable
with standard deviation

1
- V2b

Infact, fin.»(x) is a density ori0, +-oo[, and not ori0, 2].
Nevertheless, for the values bfm, that we will use b ~
8, m ~ 0.5), and forx > 2,

(20)

Fnp (x) % exp(—b2x?) (21)
and

2
/ fp(x) dx ~ erf(2b). (22)
0

For b =8, 1— erf(2b) ~ 0.23 x 107112 We can thus
consider, for our practical needs, thét »(x) is a density
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Fig. 28. Evolution with time of the parameteis (top) andb (bottom) of
the obliquity density distribution given i&q. (23) The least square fit of
m is m = 54515+ 3.726logT) — 0.583 Iogz(T). The mean value ob,
by, = 7.825 is plotted in dotted line.

(e, = 58.622 in Fig. 27), given by

&; = arccosl —m). (24)

The value ofb is nearly constant, with mean value=
7.825, whileg,; can be approximated by

¢, = 54515+ 3.726log T) — 0.583 lod(T), (25)

whereT is in Gyr. As for the eccentricitfEgs. (23) and (25)
provide a precise description of the obliquity evolution be-
yond 500 Myr. It should be noted that the denskjg( 279

sin(x)

m

Sax) =

1[0,8,;,](x)1 (26)

where 1o ..1(x) is the characteristic function of the interval

on [0, 2]. Once we have a good candidate for the density of [0, ¢;], represents also the uniform density on a spherical

1 — cog¢), we obtain easily the density efon[0, 7] as

B sin(x) R
#b () == {erf(b[1 - cogx) +m])

—erf(b[1— cosx) — m])}.

o

(23)

The parametersi, b are determined by least square fit
to the observed density of the obliquity, and we fifagh ~
0.479, bao >~ 7.793. As with the eccentrity, the agreement
is so good tha; ;, ,,(x), plotted with a dotted line (label c) in
Fig. 27is barely discernible from the density of the obliquity.

We have then determined the parameiér® on each
time interval, but instead of plotting in Fig. 28 we have

cap centered on the normal to the orbital plane of Mars, and
limited by ¢ = ¢,;, with the usual Lebesgue measure on the
sphere.

We can now look back to the evolution of the density with
time given inFigs. 14 and 200ver a short time (50 Myr),
the obliquity is localized around a mean value of abolft, 34
with a Gaussian density; but as the diffusion process evolves,
the axis density function will evolve towards a uniform dis-
tribution on the spherical cap limited by= ¢;, whereg;,
is given byEqg. (25)or Fig. 28 with an additional random
noise. The distribution of the action variabte= L cose, or
equivalently of the precession frequencydose), will also

preferred to display the corresponding value of the obliquity be uniform with the addition of a random noise.
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6. Conclusions parameters close to the “standard model” shows that large in-
creases in summer insolation may cause dynamical instabil-

The new orbital and obliquity solution presented here can ity of the polar caps and an intensive sublimation multiply-
be used over 10 to 20 Myr for precise paleoclimate studies ing global atmospheric humidity by a facter50 (Jakosky
on Mars. It is important to recall that the severe increase of et al., 1995; Richardson and Wilson, 2002; Mischna et al.,
obliquity at 5 Myr is robust with respect to the uncertainty 2003) If not limited by a thermally protecting dust lag,
on the model and initial conditions. It thus provides a con- dramatic annual water loss (estimated close to 10 crhyr
straint on the possible past evolution of the martian climates, would lead to a quick disappearance of polar caps over some
and in particular on the evolution of the ice cdpaskar et obliquity cycles and to deposition of stable surface ice in
al., 2002) The full solution, together with subroutines allow- equatorial areaglakosky et al., 1995)Geomorphological
ing the computation of the insolation for various latitudes, features should illustrate this now “current” latter situation.
derived from the similar routines used for the Earth paleocli- We can expect that conjugated efforts in climate modeling
mate studie¢Laskar et al., 1993} available onthe WEB at  (e.g.,Haberle et al., 2000; Mischna et al., 200§eomor-
http://www.imcce.fr/Equpes/ASD/mars.html phological observations from ment and future spacecraft

The orbital solution of Mars should be precise over about missions (e.g.Head and Marchant, 20pand comparison
40 Myr, much longer than the time of validity of the oblig-  with astronomical solutions will improve the reconstruction
uity and precession quantities. We have provided as well of the past “high obliquity” martian climate.
the nominal orbital solution of Mars over 100 Myr, for ref-
erence, and as an example of possible evolution, although
we know that with the problem of numerical roundoff error - A ck nowledgments
alone, the solution has practically no chance to be valid over
more than 60 Myr.

Over longer time scale, beyond 100 Myr, the chaotic
regime prevails, and we cannot give any precise evolution of
the obliquity or of the orbit. Nevertheless, we are able to give
here a very precise estimate of the density function of the
obliquity and eccentricity ovehte age of the Solar System,
and have thus in a very concise way all the information for
producing statistical estimates of the past climate evolution
of Mars along its history. In particular, beyond 500 Myr, the
density distribution of the axis of Mars tends towards a uni-

J.L. thanks A. Coquio and B. Derrida for discussions on
random processes. A large part of the computations were
made at IDRIS-CNRS, and we benefited from support from
PNP-CNRS, and CS from Paris Observatory.
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