
Random walk, self-avoiding random walk

        IMPLICIT NONE
        integer saw
        integer i,j,is,weight
        integer io,jo
        integer ne,nemax,nt,ntmax,vmax
        double precision rnd,rnds,r2,t,wnow
        parameter(saw=1) ! saw=0, random walk, saw=1, self-avoiding walk
        parameter(ntmax=100) ! maximum number of time steps
        parameter(nemax=100000)  ! number of walks in ensemble
        parameter(vmax=100) ! max size for visit matrix
        double precision r2a(ntmax) ! accumulated average of r**2
        double precision  wtot(ntmax) ! accumulated "weights" at each step
        integer visit(-vmax:vmax,-vmax:vmax)    ! keep track of visited sites



c initialize random number generator
        call RANDOM_SEED

Random number generator

50       call RANDOM_NUMBER(rnd)
         call RANDOM_NUMBER(rnds)

One random number (rnds) can be used to decide on +/-
Step

Other random number (rnd) can be used to decide whether
we move walker in x,y, or z direction



   do ne=1,nemax ! Nemax realizations of random walk

    do nt=1,ntmax

   …

60       r2=real(i)**2+real(j)**2+real(k)**2
            r2a(nt)=r2a(nt)+r2/nemax
   enddo

 enddo

Average r**2 for many random walks



Random walk, self-avoiding random walk in 3D

SAW not exactly right! What is wrong?

<r
2 >

log N

~N6/5

~N



Each path should be equally likely…

P1=(1/4)(1/3)(1/3)(1/3) P2=(1/4)(1/3)(1/3)(1/2)

Path 1 Path 2

P2 > P1

This somewhat surprising result shows that some
paths will be overrepresented in a random
ensemble due to self-intersecting trajectories. The
disallowed red path skews ensemble.

In fact, P2 = (3/2)P1.



We could throw away entire paths…

• If a self-intersecting step is chosen at random, throw
away entire path and start over

• Correct statistics… terrible sampling…

• For long enough paths, we hardly ever avoid one self-
intersecting step…

• We can apply an “enumeration” technique of Giordano

• Another approach is to weight trajectories



Enumeration a la Giordano… consider 2D SAW

dir(1)=1

dir(1)=4 dir(1)=2

dir(1)=3

• The array dir(n) selects the direction for the nth step

• Predefine length we are searching (ntmax=20)

• Do project in two-dimensions



Enumeration a la Giordano… consider 2D SAW

• Sample all paths for some nmax (e.g. ntmax=20)

• For nmax=20, ~109 paths!

• Hard to go much further



Outline of approach…
Start with n=1, dir(1)=1 for the first step. Set visit(0,0)=1.

For each site n we are at…

 1. Check if we have tested each direction… dir(n)=1,2,3,4
      If yes, then backtrack n=n-1, set visit for site to 0 (unvisited)
      If no, check and see if the next site is unvisited

      When we backtrack, we will consider the next direction from
       the n-1 site

       Otherwise, if next site unvisited, go to it and mark it as
visited, also increment dir(n)

     If next site is visited, go to next direction (increment dir(n))
     and again go back to step 1 to see if each direction searched



How do we proceed? When do we end?

• Each path that reaches desired limit is included in averages

• When we backtrack to n=0, we are finished (all paths searched)

For example… if dir(n)=1 searches “up”, and ntmax=3, we 
First sample a path of all up arrows and set dir(1)=2, dir(2)=2 

Next path…
after backtrack…

This is for
dir(3)=2…
accept it
then set
dir(3)=3…



Continuing along…

After this step, dir(3)=3,
corresponding to a “downward”
step which revisits a site… so
increment dir(2)=4

We accept this one and increment
dir(2)…. But then dir(2)=5, so we
are done with this “family” of paths,
so we backtrack…



And more…

Last step before backtrack…

Since dir(2)=2, we must consider
all paths that have an “up” then a
“right” step… start with the path at
the left which is for dir(3)=1…
accept and set dir(3)=2



Another approach…

• Random paths with appropriate weights…

• Weight path by factors 4-possible paths

Path 1 Path 2

Weight factor 3 Weight factor 2



Results for 100,000 random walks, with
and without weights for N=100 steps…

• Conclusion is that weights approach agrees with ν=3/4
• Can extend to larger walks than enumeration 



Effect of step size… 10,000 and 100,000
random paths to compare statistics…

• Statistics reasonable even for 104… Giordano does
  109 for only a 20 step SAW!!



50 weight=4-visit(i+1,j)-visit(i-1,j)-visit(i,j+1)-visit(i,j-1)

 wnow=(1.0d0/3.0d0)*wnow*weight
 wtot(nt)=wtot(nt)+wnow

weight= 1,2,3depending on how many paths exist

More possible paths give a higher weight to chosen path

Total weight of path is product of factors for each step

Weight=0 used in case we have a dead end.

Weight factors in my code…


