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Concepts of Energy I:
Work and Energy

LOOKING : Ty
B A CK Sections 2.3; 5.2-5.4; 5.6; 8.2

9.1 Introduction

[**Photo suggestion: A photo collage showing the sun, a windmill, a power plant, and an
electric transmission line.**]

The concept of energy is one of the most important concepts in all of science. Auto-
mobiles, rockets, computers, biological organisms, and ecosystems all use and transform
energy in a myriad of ways. Energy is also vital to our daily lives. We use chemical energy
to heat our homes and bodies, electrical energy to power our lights and computers, and
solar energy to grow our crops and forests. Energy—its characteristics, transformations,
and conservation—will be a major new theme in this text. Energy will give us a new per-
spective on motion. In addition, energy will give us a new tool for problem solving

It is difficult, however, to define in a general way just what energy is. The concept of
energy has grown and changed with time, and you will come to understand energy better
through seeing many examples of how energy is used than by formal definitions. We will
start by discussing what seems to be a completely unrelated topic—money. As you will
discover, monetary systems have much in common with energy. |

The Parable of the Lost Penny

Jose was a hard worker. His only source of income was the paycheck he received each
month. Even though most of each paycheck had to be spent on basic necessities, Jose man-
aged to keep a respectable balance in his checking account. He even saved enough to occa-
sionally buy a few stocks and bonds. Jose never cared much for pennies. To him they
seemed more trouble than they were worth. So Jose kept a jar by the door and dropped all
of his pennies into it at the end of each day. Eventually, he reasoned, his saved pennies
would be worth taking to the bank and converting into crisp new dollar bills.

Jose found it fascinating to keep track of these various sources of money. He
noticed, somewhat to his dismay, that the amount of money in his checking account did




not spontaneously increase overnight. Neither did the number of pennies in his jar.
Furthermore, there seemed to be a definite correlation between the size of his paycheck
and the amount of money he had in the bank. So Jose decided to embark on a systematic
study of money.

He began, as would any good scientist, by using his initial observations to formulate
a hypothesis. Because this was a fairly involved hypothesis involving the relationships
between various sorts of money, Jose
called it a model of his monetary sys-

Income /
tem. He found that he could represent U
the monetary model as a flow chart, as :
shown in Fig. 9-1. Liquid Assets = L = cash-on-hand + checking account
As the chart shows, Jose found that Saved Assets = § = stocks and bonds + pennies in jar
it was convenient to divide his money Total Wealth = W=L +§
into two basic types—Iliquid assets and U
saved assets. The liquid assets L, Expenditures E
which included his checking account
and the cash in his pockets, were mon- FIGURE 9-1 Jose’s model of the monetary system.

eys available for immediate use. His

saved assets S, which included his stocks and bonds as well as his jar of pennies, had the
potential to be converted into liquid assets, but they were not available for immediate use.
Jose decided to call the sum total of assets his wealth: W =L + S.

Jose’s assets were, more or less, simply definitions. The more interesting question, he
thought, was how his wealth depended on the monetary transfers of income I and expen-
ditures E. These transfers represented both money transferred fo him by his employer and
money transferred by him to stores and bill collectors. After painstaking collection and
analysis of data, Jose finally deduced the quantitative relationship between the monetary
transfers and his assets to be

I-E=AL+AS=AW.

Jose interpreted this equation to mean that the ner monetary transfer to him, given by
I — E, was numerically equal to the change in his wealth, AW. (His data clearly refuted the
competing hypothesis of his next door neighbor Bubba, who had asserted that I —E = W.
That is, that the net monetary transfer equals net wealth. After all, Jose noted, his wealth
did not drop to zero on days when he had neither income nor expenses.)

During a one-week period when Jose stayed home sick, isolated from the rest of the
world, he had neither income nor expenses: I — E = 0. Amazingly, but in grand confirma-
tion of his hypothesis, he found that his wealth W; at the end of the week was identical to
his wealth W; at the week’s beginning: W; = W;, or AW = 0. This occurred despite the fact
that he had moved pennies from his pocket to the jar and also, by telephone, had sold some
stocks and transferred the money to his checking account. In other words, Jose found that
he could make all of the internal conversions of assets from one form to another that he
wanted, but his total wealth remained constant (W = constant) as long as he was isolated
from the world. This seemed such a remarkable rule that Jose named it the law of conser-
vation of wealth.

One day, however, Jose added up both his income and expenditures for the day and
the changes in his various assets—and he was 1¢ off! I —E = AL + AS -1 ¢.Jose quickly



verified that it wasn’t just a math error, but that some money really, and inexplicably,
seemed to have vanished. Jose was devastated. All those years of careful research, and now
it seemed that his monetary hypothesis was not true, that under some circumstances—yet
to be determined—I/ — E # AW. Off by a measly penny. A wasted scientific life....

But wait! Jose realized, in a flash of inspiration, that perhaps there were other types of
assets that he had not discovered and that, if all assets were included, his monetary
hypothesis would still be valid. Weeks went by as Jose, in frantic activity, searched fruit-
lessly for previously hidden assets. While his life disintegrated, his girlfriend gave him an
ultimatum: “Knock off this manic behavior and clean house, or I'm moving out.” As Jose,
his spirits low, lifted the cushion off the sofa to vacuum out the potato chip crumbs—Ilo
and behold!—there it was! The missing penny!

Jose raced to complete his theory, now including the sofa (as well as the washing
machine) as previously unknown forms of saved assets that needed to be included in S.
Other researchers soon discovered other types of assets—particularly the remarkable find
of the “cash in the mattress”—that were included in Jose’s hypothesis. To this day, when
all known assets are included, monetary scientists have never found a violation of Jose’s
simple hypothesis that / — E = AW . Jose was last seen sailing for Stockholm to collect the
Nobel Prize for his theory of wealth.

9.2 Energy

Jose, despite his diligent efforts, did not discover a “law of nature.” The monetary system
is a human construction that, by design, obeys Jose’s “laws.” Monetary system laws, such
as those that say you cannot print money in your basement, are enforced by society, not
by nature. Suppose, however, that physical objects possessed a “natural money” that was
governed by a theory, or model, similar to Jose’s. An object might have several different
forms of this “natural money” that could be converted back-and-forth, but the total amount
of an object’s “natural money” would only change as a result of this natural money being
transferred in or out of the object. Two of the key words here, as in Jose’s model, are
transfer and change.

One of the greatest and most significant discoveries of science is that there is such a
“natural money,” which we call energy. A difficulty for many students, however, is that
the concept of energy is rather abstract. Force is very tangible, something you can feel,
and acceleration is a concept you can visualize. So thinking of motion in terms of forces
and acceleration seems, at least after some practice, fairly straightforward. Energy is a
more abstract and more subtle concept than is force.

But, if you think about it, money is also a very abstract idea. Money is not the pieces
of paper or objects of metal you carry in your pocket or purse. The real and tangible
“value” of that piece of paper with $100 written on it is essentially zero—the same as any
other piece of paper the same size. However, the fact that someone would give you a pair
of shoes or large stack of CDs in exchange for that piece of paper implies that the paper
has some intangible value. This monetary value of the paper is an idea that is useful only
because we, as a society, have agreed to certain “laws” about how money behaves and
about how one form of monetary value (e.g., a piece of paper with numbers on it) is
exchanged for another (e.g., real goods). So despite its abstract nature, money is quite



“real.” Energy is much the same—abstract, intangible, but nonetheless “real.” The dis-
tinction is that energy obeys natural laws, which we discover, rather than human laws,
which we invent.

There is not a single definition of energy. Energy is a concept that has developed over
a long span of time, and there are many forms, or types, of energy. You have heard of some
of these, such as solar energy or nuclear energy, but others may be new to you. These
forms of energy can differ as much as a checking account differs from loose change in the
sofa. Much of our study is going to be focused on the transformation of energy. A large
fraction of modemn technology is concerned with transforming energy from one form (e.g.,
the chemical energy of oil molecules) to another (e.g., electrical energy or the kinetic
energy of your car). We will continue to expand the concepts of energy and its transfor-
mation properties for the rest of this text.

As we use energy concepts we will be “accounting” for energy that is transferred in
or out of a system, or that is converted from one form to another without loss. It is this
characteristic of energy that makes the analogy with money so useful. The fact that
nature “balances the books” for energy is one of the most profound discoveries of sci-
ence. The possible behaviors of physical systems are sharply constrained by having to
maintain this balance. Behaviors that might otherwise seem plausible are simply found
not to occur in nature if the energy cannot be accounted for. The implications of this true
“law of nature” extend well beyond physics. Chemistry, biology, engineering, and ecol-
ogy are all significantly influenced by the laws of energy use. In the long run, the laws
of energy are far more wide-ranging and important in other disciplines than are
Newton’s laws of mechanics.

Even though certain forms of energy were recognized quite early, the law of conser-
vation of energy was not recognized until the mid-nineteenth century, long after Newton.
The reason, similar to the situation with Jose’s “lost penny,” was that it took scientists a
long time to realize how many types of energy there are and the various ways that energy
can be converted from one form to another. The ideas involved go well beyond Newtonian
mechanics to include new concepts about heat, about chemical energy, and about the
energy of the individual atoms and molecules that comprise a system. The complete state-
ment about energy and its transformation properties is known as the first law of thermo-
dynamics. It is a new statement about nature, having more content and meaning than can
be deduced from Newton’s laws alone. We will defer the full first law until our study of
thermodynamics, but these next few chapters will begin the important task of introducing
the concepts of energy.

It is worth emphasizing that the law of conservation of energy is a scientific hypothe-
sis about nature. Simply writing down a quantitative relationship between various con-
cepts does not make the relationship true. Like Jose, we must first postulate a relationship
and then seek evidence for its validity. As of today, with 150 years of experimental evi-
dence, we know of no violations of the law of conservation of energy. It has become one
of the firmest principles of science. Many scientific discoveries, in fact, have been made
as a consequence of experiments where there seemed to be some “missing energy.” Rather
than believe they had discovered a violation of energy conservation (although that could
happen!), the scientists believed so firmly in energy conservation that they searched until
they discovered the source of the missing energy.



9.3 The Basic Energy Model

Figure 9-2 provides a basic model of energy that is analogous to Jose’s model of money.
As a basic model it 1s certainly not complete, and we will add significant new features to
our model as we need them. Nonetheless, it is a good starting point.

A

SYSTEM
Energy transfer Motional energy = "kinetic energy” = K

ENVIRONMENT Stored energy = "potential energy” = U

Work =W

Mechanical energy = E_ ., =K + U

—— System boundary

FIGURE 9-2 The basic energy mode! of a system interacting with its environment.

Once again we are distinguishing between the system that we wish to study and its sur-
rounding environment. The system can be characterized by two quantities that we call the
kinetic energy and the potential energy. All we need to know about these for now is that
kinetic energy (symbol K) is an “energy of motion,” while potential energy (symbol U) is
a “stored” energy that has the “potential” to be converted to kinetic energy. (Note that such
a conversion would be an energy transformation.) Kinetic energy is analogous to Jose’s
liquid assets, while potential energy is analogous to his saved assets. The sum of kinetic
and potential energy (analogous to wealth) is called the mechanical energy £, =K + U.
The term mechanical energy designates this form of energy as being due to motion and
mechanical effects (like stretching springs) rather than chemical effects or heat effects,
which are other forms of energy that we will introduce later. For now, we will omit the
subscript and use the symbol E to mean mechanical energy. Later, when it becomes impor-
tant, we’ll use E_ ., to distinguish mechanical energy from other forms of energy.

Kinetic energy, as you will learn in the next section, depends upon the speed | V1 of the
system. Because the speed can be zero but never negative, we require K > 0. The fact that
kinetic energy can never be negative is one of its important characteristics. Potential
energy is a bit harder to understand, but a good prototype of potential energy is a stretched
rubber band. A stretched rubber band, as you know, is just waiting to be released in order
to launch a paper wad. In other words, it has the “potential” for producing kinetic energy.
The rubber band’s stretch represents “saved” or stored energy, and that is what potential
energy is all about. The energy stored in a rubber band depends on how far it is stretched—
that is, on the position of the ends of the rubber band. So while kinetic energy depends on
speed, potential energy depends on position. As you will see, we can use energy ideas to
relate an object’s speed to its position.

A system, unless it is completely isolated, has the possibility of exchanging energy
with its surrounding environment. There are two primary processes by which this can
occur. The first, which is the only one we are going to be concerned with for now, is as a
result of forces—pushes and pulls—exerted on the system by the environment. This
mechanical energy transfer goes by the name work. It is also possible for energy to be
transferred between the system and its environment, if they are at different temperatures,
by a nonmechanical energy transfer process called heat. Heat is a significant aspect of the



energy model that we will add when we get to the study of thermodynamics, but for the
time being we will concentrate on the mechanical transfer of energy via work.

The symbol for work is W. (The possibility for confusion once again rears its ugly
head, because now you have to make sure that you do not confuse work W with weight
W or its magnitude IW 1). Notice that the arrow labeled work in Fig. 9-2 is bi-directional,
rather different than the single-direction arrows of “income” and “expenditures” in Fig. 9-1.
This is because work is a quantity that can be either positive or negative, with the inter-
pretation that:

W > 0 = the environment does work on the system and the system’s energy increases,
W < 0 = the system does work on the environment and the system’s energy decreases.

This is equivalent to considering expenditures—money out—to be a negative income. In
fact, that is just how accountants really do handle incomes and expenditures.

Having established our basic quantities, what is the relationship between them? Our
hypothesis, which is confirmed by experiment, is:

W=AE=AK+AU. 9-1)
In words, Eq. 9-1 says that the energy transferred 7o a system via work changes the total
mechanical energy of the system. Further, the system’s change of energy might be a
change of kinetic energy, a change of potential energy, or both. Equation 9-1 gives no
information about how the total energy change is divided up between kinetic energy and
potential energy.

Now consider what happens if you push on an object. As you push, you exert a force
on the object and do work on it. That is, you mechanically transfer energy to the object.
What happens to the object as a result of this push? One possibility is that the object will
accelerate and have a higher speed at the end of the push than it had at the beginning—an
increase of kinetic energy. The energy you transferred to the system via work ends up, in
this case, as an increase of the system’s kinetic energy. It is also possible that the push
causes a rubber band inside the system to be stretched—an increase of potential energy.
Here the energy transferred to the system via work ends up as an increase of the system’s
potential energy.

The situation could go the other way as well. Suppose a rubber band inside the system
is initially stretched and that it is used to pull an object in the environment closer. Now the
system is doing work on the environment, by pulling on it. In this case the work is a neg-
ative quantity. But the system is also losing potential energy as the rubber band retracts,
so AU is also negative. So in this example the energy of the system decreases and that
amount of energy is transferred o the environment by doing work on it.

It is not just poor typing that has led us to emphasize the terms of and fo in the last three
paragraphs. We are making a very significant point about work and energy. Kinetic energy
and potential energy are properties that characterize the system. Like mass or charge, we
could say that they are properties of the system. We will often talk about the state of the
system, by which we mean the specific characteristics of the system at a particular time. In
addition to mass, charge, kinetic energy, and potential energy, quantities such as pressure
and temperature also characterize the state of the system. They are of the system.

Work, on the other hand, is not a property of the system. It is a process, or an interac-
tion, between the system and the environment. It is something done fo the system in order



to change the state of the system. That is why Eq. 9-1 has A’s on the right side but not on
the left. The system had a certain amount of kinetic energy K; and potential energy U,
before work was done on it, and it ends up with some other amount K; and Uy after the
work was done. We can measure the change of state of the system in terms of its change
of kinetic energy AK = K¢ — K; and its change of potential energy AU = U; — U,. But work
does not have a before and after—it is simply a measurement of something that was done
to the system.

So as we interpret Eq. 9-1, we want to say that a process, namely doing work on a sys-
tem, causes a change in the state of the system. The work done does not tell us anything
about how much total energy E the system has (recall Bubba’s mistaken conjecture in the
parable), but only by how much the total energy changes.

9.4 Kinetic Energy
In the previous section we began to develop the idea that the state of a system can be
changed by an external influence or process acting on the system. This is rather vague, so
let us see if we can make the idea more precise by associating “state of the system” and
“external influence” with specific quantities that we can measure or calculate. We will
concentrate, for now, on the motion of a single parti-
R cle—the simplest possible system. Chapters 10 and
o F > 11 will expand these ideas to more complex systems
of multiple particles.
Figure 9-3 shows a particle of mass m that moves
-— A —— along the x-axis from an initial position x; to a final
position x; under the influence of a constant force F.
FIGURE 9-3 A particle moving from The force acts steadily on the particle as it moves—
x; to xg under the influence of a that is, the force is not an impulse force that acts
constant force F. briefly on the particle at x;, but is a force that is
applied throughout the particle’s motion. Such a
force will cause a constant acceleration a = F/m. Recall, from one-dimensional kinemat-
ics, that a particle accelerating from initial velocity v; to final velocity v; with constant
acceleration a obeys

Vf2 = Vi2 + 2(1(.X'f - x,-)

= v;2 —v;%2 = 2aAx. 62
Substituting a = F/m and doing a bit of rearranging gives
n (9-3)
= %mvf2 —%mvi2 =FAx.
We can rewrite Eq. 9-3 in the form
AGm?)=FAx. (9-4)

What does Eq. 9-4 tell us? The basic quantity on the left, %mvz, 1s a characteristic of
the particle. It depends, at any particular point of the motion, only on the particle’s mass



and velocity. Thus the quantity %mv2 measures the state of the system. The right-hand
side, however, measures something being done fo the system. A force, from an agent
somewhere in the environment, reaches in and pushes the particle through a displacement
Ax. The quantity FAx thus represents a process that happens. With these ideas, we can
interpret Eq. 9-4 as saying that the process of a force F pushing the particle through a
displacement Ax causes a change in the state of the system, as measured by the quantity
%mv2. This is exactly the idea behind the basic energy model.

It 1s worth noting that the quantity FAx tells us nothing at all about the value of
$mv2, but only about how Lmv? changes. That change could be either positive—if the par-
ticle speeds up—or negative—if it slows down. How could it be negative? The quantities
F and Ax, as in our earlier analyses of one-dimensional motion, are vector components
and, accordingly, have signs. They are the “force component along the axis of motion” and
the “displacement,” both of which are signed quantities. They are not the magnitude of the
force IF | or the distance IAxl, which are always positive. If, for example, the force in Fig. 9-3
points to the left as the particle moves toward the right, it would act as a braking force that
slows the particle. The component F would be negative, because the vector F points in the
—x-direction, while Ax would continue to be positive. This would make the product FAx neg-
ative, exactly what is needed to match the negative sign of A(%mvz) for a particle slowing
down. (The change in a quantity, recall, is always the final value minus the initial value.)

The quantity %mv2 is the kinetic energy K of the particle. It is defined as

K=L1ml, (9-5)

where m is the mass of the particle. In terms of vector components,

1, 2 (9-6)

Im(v.2+v.2+v.?) general formula
K= 2 X y z g
Zmy one-dimensional motion.

By its definition, kinetic energy can never be a negative number: K > 0. The change in
kinetic energy can, of course, be negative if K decreases in value. If you find, in the course
of solving a problem, that K is negative—stop! You have made an error somewhere. Don’t
just “lose” the minus sign and hope that everything turns out OK.

One of the most important characteristics of kinetic energy is that it is a scalar, rather
than a vector. It depends on the speed | V1, but not on the velocity’s direction. The kinetic
energy of a particle will be the same regardless of whether it is moving up or down, or left
or right. Consequently, the mathematics of an energy solution to a problem is often much
easier than the vector mathematics required by a force and acceleration solution.

The unit of energy is that of mass times velocity squared. In the SI system of units,
this is kg m?/s2. The unit of energy is so important that is has been given its own name:
the joule. We define:

1 joule = 1J =1 kgm?/s2.

To give you an idea about the size of a Joule, consider a 0.5 kg mass (weight on earth of
=] pound) moving with a speed of 2 m/s (=4 mph). The mass’s kinetic energy is

K=1m?=10.5kg)2m/s)* =1J.



