Problem 5 (17 points)
A solid spherical conductor with radius $R_{1}=2 \mathrm{~m}$ is given a net charge of $+Q_{0}$ and placed inside a spherical conducting shell (with inner radius $R_{2}=4 \mathrm{~m}$ and outer radius $\mathrm{R}_{3}=6 \mathrm{~m}$) with net charge +q .
(a) Use Gauss' Law to find a symbolic expression for magnitude of the electric field (if the electric field is zero state that explicitly and show your reasoning) at the following points:

1. $r_{1}=1 \mathrm{~m}+3\left\{\frac{\text { Gens }}{E_{0}} \quad \Phi=\oint \vec{E} \cdot d \vec{A}=\int(\vec{E}| | d \vec{A})\right.$.
2. $\left.r_{2}=3 \mathrm{~m}+3\right\}$
3. $\mathrm{r}_{3}=5 \mathrm{~m}$

4. $\mathrm{r}_{4}=9 \mathrm{~m}$
$+11 . q_{n c}=0 \Rightarrow E=0$
+22 . $E=\frac{Q_{0}}{3 \operatorname{lit}}$ or $\frac{Q_{0} k}{9}$

$$
\int E \cdot d A=E \int d A
$$

E is ene
$+13 . q_{e x c}=0 \Rightarrow E=0$
constant

$$
\begin{aligned}
& +13 \cdot q_{e x}=0 \Rightarrow E=0 \\
& +24 \cdot E=\frac{\left.Q_{0}+8\right)}{4\left(\left(\sin (\pi) \pi \epsilon_{0}\right.\right.} \text { or } \frac{\left(Q_{0}+8\right) n}{81}
\end{aligned}
$$

(b) Where and how much charge is on each surface of the two conductors?

$$
\begin{aligned}
& +1 \text { Inner sphere }-+Q_{0} \text { on outside edge } \\
& +1 \text { shell } \\
& \text { Inner edge }-Q_{0} \\
& +1 \text { outeredge } \sim+Q_{0}+q \\
& \text { Picture }+1 \text { Bonus }
\end{aligned}
$$

(c) Using your expression for the electric field in part a, find the electric potential difference between the
two spheres.
two spheres.

$$
\begin{aligned}
& =-\int|\vec{E}||d \vec{s}| c \operatorname{sis}^{1} \alpha \\
& d \vec{s}=d \vec{r} \quad r=4 m \quad \alpha \geq 1 \\
& |\vec{E}|=\frac{k Q_{0}}{r^{2}}=-\int_{r=2 m}^{r=4 m} \frac{k Q}{r^{2}} d r=
\end{aligned}
$$

