Problem 4 (18 points)

Three point charges, each with charge Q , are located at the three corners of a square as shown in the diagram on the right. Each side of the square is of length d . A forth charge q is then located at the fourth corner. You may use $\mathrm{k}=1 / 4 \pi \varepsilon_{0}$. Write carefully so your work can be followed
(a) Derive the potential for the point charge in the upper left corner.

$$
\begin{aligned}
& \text { Derive the potential of a point charge } \\
& |\vec{E}|=k \frac{q}{r^{2}}=\frac{k Q}{r^{2}} \quad d \vec{s}=d \vec{r} \\
& \underset{r \rightarrow \infty}{\Delta V}=-\int_{r}^{\infty} \vec{E} \cdot d \vec{s}=-\int_{r}^{\infty}|\vec{E}||d \vec{s}| c,\left.s^{c}\right|^{\prime} \mid \\
& \Delta V_{r \rightarrow \infty}=-\int_{r}^{\infty}\left(\frac{k Q}{r^{2}}\right)(d r)(1) \\
& =- \text { 䡬 }^{r} k Q \int_{r_{0}}^{\infty} \frac{d r}{r^{2}}=k Q\left[\frac{1}{r}\right]_{r}^{\infty} \\
& =k Q\left[k_{0}^{\circ}-\frac{1}{r}\right] \\
& =-\frac{k Q}{r} \quad \Delta V_{\infty \rightarrow r}=-\Delta V_{r \rightarrow \infty}=-\left(-\frac{k Q}{r}\right) \\
& \Delta V_{\infty \rightarrow r}=V_{r}-X_{\infty}^{\circ}=\frac{k Q}{r} \quad \Delta V_{r}=\frac{k Q}{r}
\end{aligned}
$$

(b) How much energy was required to assemble the initial 3 Q charges?

$$
\left.\begin{array}{l}
P E_{\text {total }}=P E_{1}+P E_{2}+P E_{3} \\
\text { lsr } Q \quad \Delta V=0 \text { so } P E_{1}=0 \\
\text { 2nd } Q \quad P E_{2}=\Delta V_{1} Q_{2}=\left(\frac{k Q}{r}\right)(Q)=\frac{k Q^{2}}{d} \quad r=d \\
3 r d Q \quad P E_{3}
\end{array}=Q_{3}\left(\Delta V_{1}+\Delta V_{2}\right) \quad\left(\frac{k Q}{\sqrt{2} d}\right)+\left(\frac{k Q}{d}\right)\right]=\frac{k Q^{2}}{d}\left(\frac{1}{\sqrt{2}}+1\right) .
$$

(c) How much work is required to move a charge q from the fourth corner to a point where the diagonals of the square intersect?

$$
\begin{gathered}
0 \left\lvert\, \begin{array}{c}
\text { To move the charge } q, \text { you would have to do work } \\
V^{i} \\
W_{f} \\
0 \quad D P E=q \Delta V=q\left(V_{f}-V_{i}\right) \\
V_{i}=V_{1 i}+V_{2 i}+V_{3 i}=\frac{k Q}{d}+\frac{k Q}{\sqrt{2} d}+\frac{k Q}{d}=\frac{k Q(4+\sqrt{2})}{2 d} \\
\frac{1}{\sqrt{2}}=\frac{k}{2} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\sqrt{2} \quad V_{1 f}+V_{2 f}+V_{3 f}=\frac{k Q}{\frac{\sqrt{2}}{2} d}+\frac{k Q}{\frac{\sqrt{2}}{2} d}+\frac{k Q}{\frac{\sqrt{2}}{2} d}=\frac{3 \sqrt{2} k Q}{d} \\
\triangle P E=q\left(\frac{3 \sqrt{2} \cdot k Q}{d}-(4+\sqrt{2}) \frac{k Q}{2 d}\right)
\end{array}\right.
\end{gathered}
$$

