Group Test 2 (25 points)

Physics 2049 Spring 2003

GOAL solution: G step (2 student examples)


```
Gather information:
What is known? What are you looking for?
Predict a reasonable answer with units. (Consider limiting cases.)
    unouns:
    B=}=3\times10-8\textrm{C
    v
    \lambda=-8.0\times1\mp@subsup{0}{}{-6}\textrm{c}/\textrm{m}
    x _ { 1 } = . 1 5 \mathrm { m }
    x
    \DeltaX=.08m
    mp}=6.0\times1\mp@subsup{0}{}{-9}\textrm{kg
    unat isvf@ dectector
            Cluess: }900\frac{m}{s}>x>3\times1\mp@subsup{0}{}{8}\frac{\textrm{m}}{\textrm{s}
                    B/C Q is postive d }\lambda\mathrm{ we.know that its qoingto specel up and
                    opposite charqes attract
    Assumptions
    - Infinitelyy long wire /
    - not going to travel faster than speed olliglat}
    - UltraviDlet crambe- didnnt cuange prspeti"s on patizuX
    - mass stays constant I
    Limiting cases
    - If charge changed then, E-fieldt force wowld crange, then maanitude
        would change
    - If both were lie charge, then vf wuld be slower then ve
```

Dr. Saul's comments: Note that both G steps have good fundamentals: good diagrams (where known values are defined), clear given information/knowns, clear objective (find v-final), and good guesstimates. The first G-step has a good explanation of the upper and lower limits on the guesstimate; the second has a good description of assumptions and limiting cases (although it helps to say in detail how the limiting case should affect your final answer - for example, "if the charge of the particle were increased, the final velocity should be faster because the force would be larger"). One thing to be careful of is to make sure you list your known values in terms of the units they are given in. Sometimes when you are in a hurry you can make a mistake that throws everything of without realizing it.

GOAL solution: O step (1 composite student example)

Diagrams:

Motion Diagram

Motion diagram should include Delta v diagram to indicate direction of the acceleration vector and should show the a-vector

Free Body Diagram (optional => bonus points) F BD It's always a good idea to include a E-portide free-body diagram in problems with forces. Note that this one indicates the type of force and the direction of the net force. It would be even better if the F net: force subscript included the object exerting the force and the object being acted on.

Physics Principles \& Plan:
Principles

3. $W=\int \vec{F} \cdot d \vec{s}$ definition of wale \checkmark
4. $F=E q$ electrostatic force, \checkmark
$5-\Delta k_{1}=\frac{1}{2} m v^{2}-\frac{1}{2} m V_{i}^{2}$

$$
\begin{aligned}
& \text { Steps. } \\
& \text { Use Gaps' law to find the field of the wire }\left(e_{8}, 2\right) \text {, } \\
& \text { Step } 2 . \\
& \text { Use field to find Force on on Emission particle }(e q, 4) \checkmark \\
& \text { Step } 3 \text {. } \\
& \text { Use definition of work } \alpha \text { the force from step } 2 \text { and the dasplocemett } \\
& \text { to find the work conc on the particle. (eq, 3) } \\
& \text { Steps. Use (eq.1) } 2 \text { (eg.5) to set up on equality relating } v_{f} \text { to work }{ }^{2} \\
& \text { Step } 5 \text {. Solve for } V_{f} \text { plus in values and solve, }
\end{aligned}
$$

Dr. Saul's comments: Good identification of key physics principles and a good step-by-step plan to show how those principles can be used (The $\Delta K E$ equation is crossed out because it is not a major principle-note that the group did not lose points for including it). Most experts in science and technology always try to plan out their problem solving approaches when attacking problems beyond what is familiar and easy. I would like you to try this too. Some of you are, but some of you are still doing the analysis before writing down your plan. NOTE: Sometimes you will need to change your plan as you are doing your analysis and find that you forgot something. That's OK as long as you add corrections to your plan in the O-step. Just make sure they are marked as corrections to your original plan.

GOAL solution: A step (1 student example)

$$
\begin{aligned}
& \text { Analyze the problem: } \\
& \text { Identify and show general physics equations. } \\
& \text { Add constraints that specify condition that restrict the problem. } \\
& \text { Solve for the unknown variable in terms of the known variables. } \\
& \text { Substitute known values, calculate answer, round appropriately. } \\
& \Delta V=-\int \vec{E} \cdot d \vec{r}=-\frac{w^{\text {why }}}{\varepsilon_{\text {particle }}} \theta_{0}-\frac{\Delta k E}{q_{\text {partul }}} \\
& -\int_{r_{i}}^{r_{y} \lambda} \frac{\lambda}{2 \pi r \varepsilon_{0}} d r=\frac{\frac{1}{2} m v_{i}^{2}-\frac{1}{2} m v_{f}^{2}}{\text { Qpwrive }} \\
& \begin{array}{l}
\frac{-\lambda}{2 \pi \varepsilon_{0}}\left(2 \left\lvert\, r_{d}\left(-\ln \left|r_{i}\right|\right)=\frac{\frac{1}{2} m v_{i}^{2}-\frac{1}{2} m v_{f}^{2}}{q_{p+i t}}\right.\right. \\
2 \pi \varepsilon_{0}\left(\ln \left(r_{A}|-\ln | r_{i} \mid\right)=\frac{m}{2}\left(v_{i}^{2}-v_{f}^{2}\right)\right.
\end{array} \\
& \frac{-\lambda \lambda \varepsilon_{\text {partick }}}{\chi \pi m \varepsilon_{0}}\left(\ln \left(r_{f}|-\ln | r_{i} \mid\right)=v_{i}^{2}-v_{f}^{2}\right. \\
& \sqrt{\left(\frac{\lambda \varepsilon_{p_{\text {rotict }}}^{\pi m \varepsilon_{0}}}{\pi}\left(\ln \frac{r f}{r_{i}}\right)+v_{i}^{2}\right)}=V_{f} \\
& \begin{array}{c}
V_{f}=\sqrt{\left.\frac{\left(-8.0 \times 10^{-6} \mathrm{C} / \mathrm{m}\right)\left(3.0 \times 10^{-8} \mathrm{C}\right)}{\pi\left(6.0 \times 10^{-9} \mathrm{~kg}\right)\left(8.85 \times 10^{-12} \frac{\mathrm{c}^{2}}{\mathrm{Nm}^{2}}\right)\left(4, \frac{.07 \mathrm{~m}}{.15 \mathrm{~m}}\right)+(900 \mathrm{~m} / \mathrm{s}}\right)^{2}} \\
V_{f}=1380 \mathrm{~m} / \mathrm{s} \approx 1400 \mathrm{~m} / \mathrm{s}
\end{array}
\end{aligned}
$$

Dr. Saul comments: This is a pretty good solution. Note that a Gaussian surface is drawn for calculation of the E-field. The rest of the symbolic solution is well organized and easy to follow. It is easy to see how the definition of electric potential and the work-energy theorem are used. There are only two points that could stand improvement. One, since DV is defined in terms of the Work done by the electric force and the work-energy theorem depends on the net Work, it is important to explicitly state how they are related, i.e. that since the only significant force is the electric force, $W e=$ Whet. Two, there is a sign error with regards to the charge density and with the In function. Fortunately both errors cancel out.

GOAL solution: L step (2 student examples)

Dr. Saul comments: Note how both L-steps show some thought about if the answer is reasonable and why the problem was assigned. The groups compare their answer with their guestimate and look at limiting cases. Note how much easier it is to talk about the limiting cases when you have the symbolic solution right in front of you. The L-step on the right looks at initial $K E$ and λ. The L-step below looks at changing the initial position and the charge on the emission particle. This is also a good unit check and a couple sentences on why this was problem was

We knew the V world inercese and it Led. $V_{F}>V_{i}$
$\left.V_{A}=\left[\left.\frac{\lambda q_{i}}{\pi \varepsilon_{0} M}\left(\ln \left|x_{1}\right|-\ln \left|x_{2}\right|\right)+\quad \right\rvert\, v_{i}^{c}\right)\right]^{1 / 2}$
If the initial $K E$, increased our final veloerte would increase, Also If the charge or the charge density nereased we would expect the Force to inerecese and thees the velocity and it would
 we learned to check vents, because our equation
was nessedup. We Alg, Learned how t use gavss'2 1 find ar Fefiell and relate it th fore e $t W$ Then vee the work to integrate ad find hiv the we put all of our Knowledge togathern this

$$
\begin{aligned}
& \left|\vec{v}_{f}\right| \approx 1400 \mathrm{~m} / \mathrm{s} \text { which tales in with our prediction } \\
& \text { that } 900 \mathrm{~m} / \mathrm{s}<\left|\overline{v_{+}}\right|<C=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} \checkmark \\
& \text { Unit to } \\
& \frac{m}{s} \stackrel{?}{=} \sqrt{\frac{\left(\frac{c}{m}\right)(c)}{(\mathrm{k} g)\left(\frac{c^{2}}{N m^{2}}\right)}+\left(\frac{m}{s}\right)^{2}}=\sqrt{\frac{\ell^{2} \cdot \Delta^{2} m^{2}}{s_{s} \cdot \ell^{2} \cdot m}+\left(\frac{m}{s}\right)^{2}} \\
& =\sqrt{\frac{m^{2}}{s^{2}}+\frac{m^{2}}{s^{2}}}=\frac{m}{s} D \\
& \text { Limiting Cases) \& Modifications) } \\
& \text { - If } r_{f}=r_{i} \text { then } \ln \left(\frac{r_{f}}{r_{i}}\right)=0 \text { and } \Delta V_{i \rightarrow F}=0 \checkmark \\
& \text { - If } \text { quericiele }=0 \text {, tween }\left|\bar{v}_{f}\right|=\left|\bar{v}_{i}\right| \text {, which world } \checkmark \\
& \text { be expected became the partich mould expervace } \\
& \text { no electrostatic force, therefore no acceleration. } \\
& \text { Why war problem assigned? } \\
& \text { This problem wen devighed to test us on all of the } \\
& \text { physics concepts we hove learned so far, as it } \\
& \text { required the knowledge + application of Conlonk: Law } \\
& \text { for } E \text {-fields, Gaps Law, E-fielt of confinuour charge } \\
& \text { distribution. Electric Potential, Work-Ehergy Tho, it the } \\
& \text { Conservation of Elensy. }
\end{aligned}
$$

assigned. These are both excellent L-steps, but both would be improved by saying more about how this problem uses ideas from before and shows a real world application. One might even include a thought about other applications that might use these same physics principles.

