## Problem 4 (10 points)

The graph below is velocity verses time graph for a particle having an initial position  $x_0 = x$  (t =0) = 0. At what time or times is the particle located at x = 35 m? Work directly from the graph, using the graphical relationship between velocity and position, and not from any kinematics formulas.



Each box represents an area = 5 m/s \* 2 s = 10 m => each box represents a displacement of 10 m At t = 0 the particle is at x = 0 m

| Time<br>interval | # of boxes  | Displacement                           | Position at the end of the time interval $(**x = 35 m)$ |
|------------------|-------------|----------------------------------------|---------------------------------------------------------|
| 0 s to 2 s       | 2 boxes     | 2 boxes * 10 m/box = 20 m              | x = 20 m                                                |
| 2 s to 4 s       | 1.5 boxes   | $1.5 \ boxes * 10 \ m/box = 15 \ m$    | x = 20 m + 15 m = 35 m **                               |
| 4 s to 6 s       | 0.5 boxes   | $0.5 \ boxes \ * \ 10 \ m/box = 5 \ m$ | x = 35 m + 5 m = 40 m                                   |
| 6 s to 8 s       | - 0.5 boxes | -0.5 boxes * 10 m/box = -5 m           | x = 40 m + (-5 m) = 35 m **                             |
| 8 s to 10 s      | - 1.5 boxes | -1.5 boxes * 10 m/box = -15 m          | x = 35 m + (-15 m) = 20 m                               |
| 10 s to 12 s     | -2 boxes    | -2 boxes * 10 m/box = -20 m            | x = 20 m + (-20 m) = 0 m                                |
| 12 s to 14 s     | -1.5 boxes  | -1.5  boxes  * 10  m/box = -15  m      | x = 0 m + (-15 m) = -15 m                               |
| 14 s to 16 s     | - 0.5 boxes | -0.5 boxes * 10 m/box = -5 m           | x = -15 m + (-5 m) = -20 m                              |
| 16 s to 18 s     | 0.5 boxes   | $0.5 \ boxes \ * \ 10 \ m/box = 5 \ m$ | x = -20 m + 5 m = -15 m                                 |
| 18 s to 20 s     | 1.5 boxes   | 1.5  boxes  * 10  m/box = 15  m        | x = -15 m + 15 m = 0 m                                  |
| 20 s to 22 s     | 2 boxes     | 2 boxes * 10 m/box = 20 m              | x = 0 m + 20 m = 20 m                                   |
| 22 s to 24 s     | 2 boxes     | 2 boxes * 10 m/box = 20 m              | x = 20 m + 20 m = 40 m                                  |

In the last time interval (22s < t < 24s), the particle clearly passes x = 35 m during this interval. Since velocity is constant, position is changing at a constant rate

Since x = 35 m represents  $\frac{3}{4}$  of the displacement during this time interval It will happen  $\frac{3}{4}$  of the way through the time interval at t = 23.5 s

So x = 35 m at t = 4 s, 8 s, and 23.5 s