Problem 4 (10 points)

The graph below is velocity verses time graph for a particle having an initial position $\mathrm{x}_{0}=\mathrm{x}(\mathrm{t}=0)=0$. At what time or times is the particle located at $\mathrm{x}=35 \mathrm{~m}$? Work directly from the graph, using the graphical relationship between velocity and position, and not from any kinematics formulas.

Each box represents an area $=5 \mathrm{~m} / \mathrm{s} * 2 \mathrm{~s}=10 \mathrm{~m}=>$ each box represents a displacement of 10 m At $t=0$ the particle is at $x=0 \mathrm{~m}$

Time interval	\# of boxes	Displacement	Position at the end of the time interval (${ }^{* *} x=35 \mathrm{~m}$)
0 s to 2 s	2 boxes	2 boxes * $10 \mathrm{~m} / \mathrm{box}=20 \mathrm{~m}$	$x=20 \mathrm{~m}$
2 sto 4 s	1.5 boxes	1.5 boxes * $10 \mathrm{~m} / \mathrm{box}=15 \mathrm{~m}$	$x=20 m+15 m=35 m^{* *}$
4 s to 6 s	0.5 boxes	0.5 boxes * $10 \mathrm{~m} / \mathrm{box}=5 \mathrm{~m}$	$x=35 m+5 m=40 m$
6 s to 8 s	- 0.5 boxes	- 0.5 boxes * $10 \mathrm{~m} / \mathrm{box}=-5 \mathrm{~m}$	$x=40 m+(-5 m)=35 m * *$
8 s to 10 s	- 1.5 boxes	- 1.5 boxes * $10 \mathrm{~m} / \mathrm{box}=-15 \mathrm{~m}$	$x=35 m+(-15 m)=20 m$
10 s to 12 s	-2 boxes	-2 boxes * $10 \mathrm{~m} / \mathrm{box}=-20 \mathrm{~m}$	$x=20 m+(-20 m)=0 m$
12 s to 14 s	-1.5 boxes	-1.5 boxes * $10 \mathrm{~m} / \mathrm{box}=-15 \mathrm{~m}$	$x=0 m+(-15 m)=-15 m$
14 s to 16 s	- 0.5 boxes	- 0.5 boxes $* 10 \mathrm{~m} / \mathrm{box}=-5 \mathrm{~m}$	$x=-15 m+(-5 m)=-20 m$
16 s to 18 s	0.5 boxes	0.5 boxes * $10 \mathrm{~m} / \mathrm{box}=5 \mathrm{~m}$	$x=-20 m+5 m=-15 m$
18 s to 20 s	1.5 boxes	1.5 boxes * $10 \mathrm{~m} / \mathrm{box}=15 \mathrm{~m}$	$x=-15 m+15 m=0 m$
20 s to 22 s	2 boxes	2 boxes * $10 \mathrm{~m} / \mathrm{box}=20 \mathrm{~m}$	$x=0 m+20 m=20 m$
22 s to 24 s	2 boxes	2 boxes * $10 \mathrm{~m} / \mathrm{box}=20 \mathrm{~m}$	$x=20 m+20 m=40 m$

In the last time interval $(22 s<t<24 s)$, the particle clearly passes $x=35 m$ during this interval. Since velocity is constant, position is changing at a constant rate
Since $x=35 \mathrm{~m}$ represents $3 / 4$ of the displacement during this time interval
It will happen $3 / 4$ of the way through the time interval at $t=23.5 \mathrm{~s}$
So $x=35 \mathrm{~m}$ at $t=4 \mathrm{~s}, 8 \mathrm{~s}$, and 23.5 s

