WASP-8b: Characterization of a Cool and Eccentric Exoplanet with Spitzer

Patricio Cubillos (UCF), J. Harrington (UCF), N. Madhusudhan (Yale), K. Stevenson (UCF), R. Hardy (UCF), J. Blecic (UCF), M. Hardin (UCF), C. Campo (UCF) and D. Anderson (Keele)

Committee members: Joseph Harrington Eduardo Mucciolo Humberto Campins

April 12th, 2012

Outline:

- 1.- Introduction to exoplanets
- 2.- Objectives
- 3.- Observations and data analysis
- 4.- Orbital dynamics analysis
- 5.- Atmospheric analysis
- 6.- Thermal variation analysis
- 7.- Conclusions

Extrasolar Planets:

- 17 years of history.
- 763 exoplanets detected to date.
- Increasing discovery rate.
- Improving detection limits.

(data from exoplanet.eu)

Skemer et al. (2012)

Detection Methods:

- Direct Imaging

Detection Methods:

- Direct Imaging

100

50

0

-50

-100

0

 $V_{r} (m s^{-1})$

- Radial Velocity (Doppler Shift)

LBTAO/PISCES H-band

Mayor & Queloz (1995)

0.5

φ

1

Skemer et al. (2012)

Detection Methods:

- Direct Imaging
- Radial Velocity (Doppler Shift)
- Gravitational Microlensing

Sumi et al. (2010)

Mayor & Queloz (1995)

Skemer et al. (2012)

LBTAO/PISCES H-band

°

Oe

₀

1"

Detection Methods:

- Direct Imaging
- Radial Velocity (Doppler Shift)
- Gravitational Microlensing
- Transits

Skemer et al. (2012)

Extrasolar Planets:

"on average every star has 1.6 $\binom{+0.7}{-0.9}$ planets" i.e., "every star in the Milky Way hosts one planet or more"

(Cassan et al. 2012)

" $0.41 \left(\begin{smallmatrix} + 0.5 \\ - 0.1 \end{smallmatrix} \right)$ is the frequency of habitable planets orbiting M-dwarf stars"

(Bonfils et al. 2011)

Objectives:

Long term:

- Find evidence for life on other planets.

Shorter term:

- Determine the abundance and diversity of exoplanets.
- Study the physics and chemistry of exoplanetary atmospheres.

This work:

- Analyze secondary-eclipse light curves of WASP-8b.
- Determine broadband IR fluxes.
- Improve orbital solutions.
- Fit physical models to the IR fluxes to constrain the planet's atmospheric composition and thermal profile.

Transiting Exoplanets Observations:

The WASP-8 System:

The planet WASP-8b orbits the primary star of a binary stellar system.

Eccentric (e=0.31), 8.1-day orbit. Equilibrium temp.: 942 K

Rossiter-McLaughlin effect: ⇒ Retrograde orbit

Queloz et al. (2010)

The WASP-8 System:

The planet WASP-8b orbits the primary star of a binary stellar system.

Eccentric (e=0.31), 8.1-day orbit. Equilibrium temp.: 942 K

Rossiter-McLaughlin effect: \Rightarrow Retrograde orbit

Observations:

Spitzer Space Telescope broadband IR light curves:

	Dec. 13 2008	Dec. 21 2008	Jul. 23 2010	Jul. 31 2010
3.6 µm			>	
4.5 µm	>	>		 ✓
8.0 µm	✓	✓		

WASP-8B:

- 3.7 pixels distant from the target (~440 AU).

$$\frac{\text{WASP-8B Flux}}{\text{WASP-8A Flux}} \approx \frac{1}{6}$$

POET: Photometry for Orbits, Eclipses, and Transits

Performs: - Bad-pixel masking.

- Centering.
- Aperture photometry.
- Light-curve modeling.

POET: Centering

Implemented a double PSF fitting. – Fit { x_A , y_A , x_B , y_B , F_A , F_B , f_{sky} } (Crossfield et al. 2010)

Created high resolution stars models (Tiny Tim software).

- Positions fitted by: shifting and binning to avoid interpolation.
- Fluxes are fitted with a χ^2 minimizer.

POET: Photometry

We need to remove the contribution from WASP-8B.

Implemented two methods: 1.- B-Subtract photometry: Subtract WASP8-B model from data.

 2.- B-Mask photometry: Discard the pixels within a circular aperture around WASP-8B. (masks radii: 1.6, 1.8, 2.0 pix.)

Performed 5X-interpolated aperture photometry (Harrington et al. 2007).

Methods x Apertures (4) x (\sim 7) = \sim 30 light curves.

Interpolated data:

Spitzer Systematics:

1.- Position dependent flux variations ("Intra-pixel effect").

Charbonneau et al. (2005)

2.- Time-dependent pixel sensitivity ("Ramp"). Agol et al. (2010)

POET: Light Curve Modeling

Model the light curve as: $F(x,y,t) = F_s E(t) M(x,y) R(t)$

F_s = System flux. E(t) = Eclipse model. Mandel & Agol (2002)

M(x,y) = Bi-linearly Interpolated subpixel sensitivity. Stevenson et al. (2011)

R(t) = Ramp model. Select among: -Polinomial -Logarithmic -Exponential functions

POET: Light Curve Modeling

Select light curve:

 Minimizing the standard deviation of the normalized residuals (SDNR).

Select model:

- Minimizig the Bayesian information criterion:

 $BIC = \chi^2 + k \ln(N)$

k: # free parameters N: # data points

POET: Light Curve Modeling

POET: Error Determination

Assessed uncertainties with a Markov-Chain Monte Carlo (MCMC) algorithm.

Orbital Dynamics:

We found, with respect to Queloz et al. (2010):

- One eclipse phase differs by 2.5σ .
- Significantly larger radial velocity drift (7.5σ).
- Marginal longer **period** (1.6σ).
- Radial velocity drift
- High eccentricity
- High obliquity
- Parameter variability

WASP-8b is being perturbed.

Parameter variability within 3 yr period Unseen object rather than WASP-8B

Characterize the planetary atmosphere by fitting physical models to the eclipse depths.

Eclipse depths = F_{planet} / F_{star} .

Parametrize:

- Pressure-temperature profile.
- Molecular abundances
 - water vapor (H₂O)
 - carbon monoxide (CO)
 - carbon dioxide (CO₂)
 - methane (CH₄)

(Madhusudhan & Seager 2009, 2010)

1D radiative transfer

Planetary spectrum

Combine the planetary models with a stellar model.

Castelli & Kurucz (2004)

Integrate spectrum over the Spitzer wavebands.

- Compare through χ^2 .
- MCMC samples the posterior distribution.

Waveband (µm)	Depth (%)	Brightness temp. (K)
3.6	0.113 +/- 0.018	1552
4.5	0.069 +/- 0.007	1131
8.0	0.093 +/- 0.023	938

(Equilibrium temperature ~ 950 K)

The molecular bands:

- Deviate spectrum from blackbody curve.
- Specific to certain wavelengths.
- Thermal profile determines: emission absorption

Depths: 3.6 μ m > 4.5 μ m \Rightarrow No thermal inversion (Independent of composition)

Agrees with: Fortney et al. (2008); Burrows et al. (2008).

How to improve the 3.6 µm fit?

- Lower methane abundance, but worsens the 8.0 μ m.
- Increase temperature, but misses fit at 4.5 and 8.0 µm.

Solar Composition. Low methane abundance.

- Near solar metallicity.
- The 3.6 µm depth is higher than expected.
- Very low energy redistribution.
- Very low albedo.

Waveband (µm)	Brightness temp. (K)
3.6	1552
4.5	1131
8.0	938

Equilibrium temp.: 942 K

The incident irradiation varies in time.

We studied temperature variations: 1-D latitude-longitude grid model.

Energy change:
$$\frac{dE}{dt} = \left[(1-A)\sigma T_{\text{eff}}^4 \left(\frac{R_*}{r(t)}\right)^2 \cos\psi(t) - \sigma T^4 \right]$$

Incident flux

Blackbody emission

Geometrical factor:

 $\cos\psi(t) = \sin\theta \max\{\cos\Phi(t), 0\}$

The sub-stellar longitude:

$$\frac{\mathrm{d}\Phi(t)}{\mathrm{d}t} = \omega_{\mathrm{rot}} - \omega_{\mathrm{orb}}(t)$$

A few reasonable assumptions:

1.- The planet is in pseudo-synchronous rotation: (Hut 1981)

 $\omega_{rot} = \{0.8, 1.0, 1.5\} \omega_{orb, p}$ (Hut 1981; Ivanov & Papaloizou 2007)

2.– The albedo is negligible: A = 0. (This work; Cowan & Agol 2011)

3.- Zero rotational obliquity. (Hut 1981, Peale 1999)

Temperature change is parametrized by T_{rad} and ω_{rot} :

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \frac{T_0}{\tau_{\mathrm{rad}}} \left[\left(\frac{a(1-e)}{r(t)} \right)^2 \max(\cos \Phi(t), 0) - \left(\frac{T}{T_0} \right)^4 \right]$$

Define: T_{rad} the radiative time, T_0 the sub-stellar temperature at periastron.

Simulation with:
$$T_{rad} = 20 \text{ hr}$$

 $\omega_{rot} = 1.0 \text{ } \omega_{orb,p}$
 $\omega_{orb,p} = \frac{(1+e)^{1/2}}{(1-e)^{3/2}} \left(\frac{2\pi}{P}\right) = 1.99 \left(\frac{2\pi}{P}\right)$

Calculated the brightness temperature as observed from Earth.

- Eclipse coincides with periapsis.
- Longer exposition time contributes.

We tested different T_{rad} :

 $- T_{rad} < 100 \text{ hr}$ reach 1400 K.

Change in $\ensuremath{\omega_{\text{rot}}}$ modifies mainly the shape.

Summary and Conclusions:

Contribution:

- POET: Re-wrote and upgraded a significant part of our pipeline.
- Developed centering and photometry routines to analyze a target in a stellar binary.
- Implemented orbital thermal evolution model.

Conclusions:

- Successfully analyzed the eclipse light curves of WASP-8b
- Determined eclipse depths
- Constrained orbital parameters
- Determined thermal profile

Thanks!

