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ABSTRACT
We have developed a new method that uses wavelet analysis to remove interference fringe patterns from

images. This method is particularly useful for spectroscopic flat fields in the common case where fringes
vary between the calibration and object data. We analyze theefficacy of this method by creating fake flats
with fictitious fringes and removing them. The method removes 90% of the fringe pattern whose amplitude is
equal to the random noise level and 60% if the fringe amplitude is≈ 1/10 of the noise level. We also present
examples using real flat field frames. A routine written in theInteractive Data Language (IDL) that implements
this algorithm is available from the authors and as an attachment to this paper.
Subject headings: methods: data analysis — technique: image processing

1. INTRODUCTION

Images in astronomical detector arrays sometimes contain
unwanted fringe patterns that are produced by the interference
of light reflecting between parallel surfaces in the instrument.
However, this pattern can change even in short timescales
(Fig. 1) mostly due to flexure and variations in the illumi-
nation geometry (e.g., from movable instrument parts). This
would imply that division by flat field would not necessarily
correct the fringes in images (Fig. 2). The latter is a widely
used approximation.

Hence, observations requiring high sensitivity necessitate
of methods with explicit removal of these patterns both in
the flat field frames and in the data frames. Fringe correc-
tion methods found in the literature are either specific to the
instrument or assume a global fringe period (e.g., Malumuth
et al. 2003a,b; Mellau & Winnewisser 1995). However, in
most cases the pattern’s period varies over the image, making
global techniques like Fourier filtering less than satisfactory.

Here we present an algorithm that uses the wavelet trans-
form, a local spectral technique (e.g., Starck & Murtagh 2002;
Torrence & Compo 1998). This transform is linear. Hence,
we can isolate the fringe pattern in wavelet space, do an in-
verse transform, and then obtain a clean image by subtracting
this reconstructed fringe pattern. The challenge is to do this
correctly in the presence of noise.

The algorithm here presented satisfactorily gets rid of
fringes in flat field frames. In principle, it could be extended
to clean data frames by interpolating the fringe in presence
of point sources (e.g., photometric data) or extended sources
in the array (e.g., spectral data). However, this extensionis
beyond the scope of this paper as it requires the design of an
stable and general algorithm that interpolates the fringe pa-
rameters. Thus, using our method improves the quality of ex-
tracted data when the fringe in flat field differs from the fringe
on the data, but will not solve the problem completely if the
fringes in the data array are significant.
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We implemented our algorithm in the Interactive Data Lan-
guage (IDL, a product of Research System Inc., Boulder, Col-
orado). The code (named “defringeflat”) is not specific to any
instrument and includes tutorial documentation. It is available
under the GNU General Public License from our websites1 or
as an electronic attachment to this paper.

Section 2 describes the algorithm. Section 3 discusses per-
formance in the presence of noise. Finally, Section 4 sum-
marizes the benefits and limitations, and presents our conclu-
sions.

2. ALGORITHM

The main steps in our procedure are listed in Table 1. Fig-
ures 3 – 9 illustrate the steps of the algorithm using an ex-
ample flat field. Their captions contain details regarding the
example array, while the main text only refers to the algorithm
in general. The example flat field is included in the defringe-
flat package.

We assume that the change in fringe period is smooth
across the columns. Prior to applying the algorithm, all bor-
ders whose values are not consistent with the image must be
cropped, and the image should be oriented such that the nodes
of the fringe pattern align mostly with the columns. The lat-
ter condition only requires that, in a per row basis, the period
must be at least several pixels, but may not exceed∼ 1/4 of
the row width. Notice that this allows fringes to have several
different patterns which do not need to look like straight lines.

STEP I. ENHANCED ROW AND WAVELET TRANSFORM

For each image row we combine several surrounding rows
to suppress random noise and remove bad pixels. To do
this, we replace each pixel in the row with the median of a
1× n subimage centered on the pixel and traversingn rows
(bin width, hereafter). We then subtract a linear fit from the
median-averaged row to obtain anenhanced row (Figure 4).
This significantly lowers the wavelet amplitudes at small pe-
riods, allowing the next step to proceed more efficiently.

1 http://www.das.uchile.cl/∼pato/sw/ or
http://oobleck.astro.cornell.edu/jh/ast/software.html
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We then compute the wavelet transform of each enhanced
row. There are several wavelet basis functions to choose from,
but this algorithm requires a complex basis (non-complex
wavelets will only show the edges of the complex wavelet am-
plitude, and thus it will not be fitable in Step II). For this par-
ticular example, we used the Morlet wavelet because its func-
tional form makes it well suited for smoothly varying periods
and because it is compact in the frequency domain. However,
notice that the accompanying code allows the user to choose
from several other popular wavelets, though, as they could be
better suited for particular data. The result for each row isa
two-dimensional (2D), complex array, whose two dimensions
are column number and period. Steps II and III are computed
over the complex array amplitudes (wavelet array, hereafter).
The phases of the complex array must be stored for use in step
IV. We now have 3 dimensions: row, column, and period.

STEP II. PARAMETRIC FIT OF FRINGE TRANSFORM

At the period of the fringe pattern, the wavelet array will
contain a prominentfringe transform pattern traversing the
columns. Its amplitude depends on the amplitude of the fringe
pattern (Figure 5). This algorithm’s success rests on our abil-
ity to distinguish this feature from the background noise level
of the wavelet array. The fringe transform may vanish at par-
ticular positions, but it should be clearly distinguishable in
most of the array. Improved sampling in period can be ob-
tained by interpolating or by decreasing the spacing between
discrete scales in the wavelet transform. The latter approach is
more accurate but demands more computer resources. Hence,
a compromise should be chosen.

We next fit the fringe transform (Figure 6). Starting from
a reference column, the fringe profile is isolated by finding
the first local minima on both sides of the reference period.
Then, either the actual data (trueshape) or a parametric fit can
be used to represent the profile within the minima. Only the
latter approach will allow execution of the optional Step III,
though. The values of the profile must be zero outside the
fringe transform. Inside, on the other hand, it is recommended
that the fringe transform profile exclude a background level
(attributable to non-fringe image components). The highest
point in the profile is used as the new reference period for the
neighbor column. The procedure is repeated for the whole
fringe transform, extending in both directions from the refer-
ence column to the cone of influence (COI) boundary, beyond
which the wavelet values are contaminated by edge effects.

To fit the profile we have experimented with an extraction
of the true shape of the profile, plain Gaussian fits with vari-
able center (GVC), and Gaussian functions in which the cen-
ter is fixed at the maximum height (GFC). Both Gaussian al-
ternatives were considered without a constant background pa-
rameter (noback), and with this parameter. In the latter case,
the background value can be kept or not when reconstructing
(keep andnokeep, respectively). In total, we tried 6 parametric
fits (that can be smoothed or not in step III) and 2 trueshape
fits, for a total of 14 fits. The Gaussian shape is chosen not
only because it is a natural choice to fit a peak, but also be-
cause it is the frequency-domain representation of the Morlet
wavelet. The relative fringe-removal efficiency of these fits
and of trueshape is discussed in Section 3.

STEP III. OPTIONAL PARAMETER SMOOTHING

If a functional parametric fit was used in the previous step,
one can reduce the effects of noise by forcing the recon-
structed fringe’s parameters to vary smoothly. After repeating

Steps I and II for every row, a 2D array is obtained for each
of the fit parameters. First, we “patch” each of the parame-
ter arrays by finding outliers that are beyond a given number
of standard deviations from the neighborhood median and re-
placing them by that median value. Then, we smooth the array
with a boxcar filter. Figure 7 shows the results.

STEP IV. RECONSTRUCTION OF FRINGE PATTERN

We next evaluate the parameters to obtain the fringe’s
wavelet amplitudes (Figure 5). Far from the reconstructed
fringe transform, the amplitude must be zero, because any
non-zero value there will cause unwanted noise in the recon-
structed fringe. In particular, if a keep method is chosen, the
reconstructed amplitude is set to zero outside the local min-
ima. Finally, we apply an inverse wavelet transform to the re-
constructed wavelet amplitude and the corresponding phases
from Step I.

We repeat these steps for every row to obtain the image’s
isolated fringe pattern (Figure 8). Due to the optional smooth-
ing, the method to obtain the enhanced rows, and the COI
boundary, the recovered fringe pattern will have smaller bor-
ders than the original image. The fringe pattern can now be
subtracted from the original image (Figure 9).

3. PERFORMANCE TESTS

The ratio of fringe pattern amplitude to the pixel-to-pixel
variation (or noise) level varies among different instruments.
We tested the algorithm’s performance at different noise lev-
els by using a synthetic image consisting of a fringe pattern,
a background intensity, and random noise with a Gaussian
distribution that mimics pixel-to-pixel flat-field variations and
photon noise.

The fringe pattern was created using an analytic function
that mimics the pattern in our example image. Its functional
form is

F(x,y) = Asin(ν(x,y)x + φ(y)),

wherex,y are the position indices in the array,A is the am-
plitude (which we keep constant), andφ() andν() are linear
functions fitted to the phase and frequency, respectively, of
our example’s fringe. Note that there is no reason forA to be
constant in a real image. The background level is a double-
linear function in both x and y directions and has an edge
taper.

We definenoise strength as the standard deviation of the
Gaussian noise divided by the standard deviation of the noise-
less fringe pattern (2−1/2A, due to its sinusoidal nature). Fig-
ure 10 shows the fraction of remnant fringe after running the
algorithm on simulated data with different fitting functions
and varying noise strength. The remnant fringe level is not
strongly dependent on noise strength and all methods show
very similar behavior with slight numerical differences when
the noise strength is below≈ 11 for noback methods and be-
low ≈ 14 otherwise. However, GFC consistently gives the
best results in all cases, even improving at high noise lev-
els when smoothing. Most of the methods remove over 95%
of the fringe at noise strength≈ 0.5 and over 55% at noise
strength≈ 9 (equivalent to Figure 3’s noise strength). The
lower plot of Figure 10 confirms the intuitive result that the
method yields better absolute results for smaller initial fringe
amplitudes.

Figure 11 shows the effect of varying the bin width. If
the width is too small when computing the enhanced row, the
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TABLE 1
STEPS OFDEFRINGINGALGORITHM

Step Description Figure

Original image with fringe 3
FOR EACH ROW

I ⇒ Compute enhanced row 4
⇒ Compute wavelet transform 5
⇒ FOR EACH PIXEL IN ROW

II =⇒ Fit fringe transform’s profile 6
FOR THE WHOLE ARRAY

III ⇒ Smooth fit parameters (optional) 7
FOR EACH ROW

IV ⇒ Reconstruct wavelet array 5
⇒ Inverse transform 5, 8
FOR THE WHOLE ARRAY
⇒ Subtract fringe pattern to obtain clean image 9

noise is insufficiently suppresed. For low noise, a bin width
that is too large will begin to average out the fringe.

The algorithm is mainly limited by the degree to which the
analytic profile fit function mimics the data. Figure 12 shows
an example of a difficult profile, which gives very different
fits when using the different fitting functions. Another source
of error is the potential for the algorithm to miss the correct
trace in the presence of high noise in the wavelet array (Figure
13).

Due to the factors listed in Step IV, the reconstructed fringe
pattern is smaller than the input data. For the example of Fig-
ure 3 this area is≈ 85% of the cropped input image, or over
90% if only considering the pixels lost for each surviving row,
on average.

4. CONCLUSIONS

We have developed an algorithm that removes fringe pat-
terns from 2D images while preserving other patterns. The al-
gorithm is especially useful for cleaning flat fields if the fringe
pattern varies between the flat and the object data.

There are three main limitations of this procedure. First,
the shape of a fringe in wavelet space may be much more
complicated than any reasonable fitting function, resulting in
a partially-corrected fringe. Second, to be able to follow the
trace, the change in the fringe’s period must be smooth. Fi-
nally, there is a region along the borders where the fringe pat-
tern cannot be recovered.

A potential for improvement exists if a method can be found
to fit the entire fringe transform pattern simultaneously inthe
3D wavelet space of row, column and period. The 2D wavelet
transform may be more appropriate for this approach.

Our IDL implementation of this algorithm and its documen-
tation appear as an electronic supplement to this article. Up-
dated versions are available on the authors’ websites or by
email request.

This material is based upon work supported by the Na-
tional Aeronautics and Space Administration under Grant No.
NAG5-13154 issued through the Science Mission Directorate.
The example flat field was obtained from public archives of
the European Southern Observatory.

Facilities: VLT:Antu (ISAAC), Keck:II (NIRSPEC)
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FIG. 1.— Consecutive sky frames. Subsections of sky frames taken with
NIRSPEC on the Keck II telescope (45 seconds integration). Fringe pattern
can be seen varying between these frames that were taken consecutively (in
order a, b, and c).

FIG. 2.— Flat field effect in correcting fringes. Section of array obtained
with the NIRSPEC instrument on the Keck telescope. Horizontal pattern is
the spectrum’s trace. Top: Raw spectrum frame. Bottom: Spectrum frame
after flat field correction. Notice that the fringe pattern isstill visible.
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FIG. 3.— Top: Sample image with fringes. Flat field was obtained with
the ISAAC instrument at the VLT. Each of the numeric parameters indicated
in the captions from Figures 3 to 9 were found to be the most appropiate
for this particular example, but will need to change for different images.
Columns 901 to 1024, and rows 0-149 and 951-1024, are vignetted and thus
are cropped before analysis. Periodicity can be estimated by eye at∼ 40
pixels in the center of the image. Bottom: Middle (512th) row.

FIG. 4.— Top: Enhanced rows. Each pixel is first replaced by the median
average of the 41 closest pixels in the vertical direction. Alinear fit to each
row is then subtracted. The fringe pattern is enhanced and some bad pixels
have been removed. Note that the usable data area is reduced by 20 rows on
the top and bottom because of the averaging. Bottom: Middle (512th) row.
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FIG. 5.— Wavelet transform of an enhanced row. In the center plots,
the dotted line marks the cone of influence (COI); wavelet values below this
boundary should not be trusted. The dashed line shows the fitted trace. Plot
a: Middle enhanced row of Figure 4. Plot b: Amplitude of the Morlet wavelet
transform of plot (a). The wavelet is interpolated in periodby a spline from
the period sampling of the transform, and the fringe transform, a coherent
pattern corresponding to a fringe with a period of 35 pixels,is clearly visible.
Plot c: Reconstructed fringe transform using a Gaussian fit (c.f. Figure 6).
Plot d: Fringe pattern after applying an inverse wavelet transform to plot (c),
plotted over the input data.

FIG. 6.— Profile fitting that is repeated for each column. Crossesare the
amplitude of the wavelet points, solid lines are the fitted profiles, and dashed
line is the background. Top: Trueshape profile; dotted area shows the profile
that will be reconstructed after subtracting the indicatedbackground. Bottom:
Gaussian fit with background.
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FIG. 7.— Gaussian height parameter smoothing. Top: Gaussian fitheight
parameter for central portion of example image. Middle: Parameter after
replacing all values more than±1.5σ from the local median level (patched
array). Bottom: Patched array after smoothing with a 19-pixel boxcar filter.
This procedure is repeated for each of the other Gaussian fit parameters.
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FIG. 8.— Top: Reconstructed fringe pattern (c.f. bottom panel of Figure
5). Bottom: Middle (512th) row.

FIG. 9.— Top: Cleaned image. Flat field of Figure 3 minus the fringe
pattern of Figure 8. Note that some of the edges remain uncorrected (see
text). Bottom: Middle (512th) row.
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FIG. 10.— Remaining fringe for varying noise strengths. Only 6 of the 14
methods are shown above, for clarity. Omitted methods are similar to plotted
methods and fall within the range of traces shown. The two nokeep methods
give the best results. In general, all methods give similar results for low noise
strength, but smoothed nokeep methods are better for high noise strength.
Top: Fraction of fringe remaining. Bottom: Absolute fringeremaining when
noise level is scaled to 1.

FIG. 11.— Remaining fringe for different enhanced-row bin widths. The
panels show same synthetic fringe pattern as in Figure 10 at three selected
noise levels. Same line styles as in Figure 10.
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FIG. 12.— Different fitting methods applied to a profile with a complicated
shape. Such shapes are due to noise and are the main limiting factor for this
algorithm. This profile comes from the fringe transform for row 798, column
627 of our example array. Crosses show the data points, whilethe solid line
is the interpolated profile. Other lines are explained in thekey. Note that
the profiles are only fit within the local minima at both sides of the reference
period.

FIG. 13.— Example of missed trace. Top: Wavelet array from row 798 of
Figure 4. Around column 650 the trace goes in the wrong direction, towards
short period, and disappears around column 720. Bottom: Wavelet array from
row 799 of Figure 4. Array is similar to top plot but now the trace is correct
through the last column.


