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ABSTRACT
We have developed a new method that uses wavelet analysis to remove interference fringe patterns from

images. This method is particularly useful for spectroscopic flat fields in the common case where fringes
vary between the calibration and object data. We analyze the efficacy of this method by creating fake flats
with fictitious fringes and removing them. The method removes 90% of the fringe pattern whose amplitude is
equal to the random noise level and 60% if the fringe amplitude is ≈ 1/10 of the noise level. We also present
examples using real flat field frames. A routine written in the Interactive Data Language (IDL) that implements
this algorithm is available from the authors and as an attachment to this paper.
Subject headings: methods: data analysis — technique: image processing

1. INTRODUCTION

Images in astronomical detector arrays sometimes contain
unwanted fringe patterns that are produced by the interference
of light reflecting between parallel surfaces in the instrument.
Usually, the fringe pattern is ignored with the hope of cor-
recting it when dividing by the flat field. However, flexure
and variations in the illumination geometry (e.g., from mov-
able instrument parts) can change the fringe pattern. Hence,
observations requiring high sensitivity necessitate explicit re-
moval of these patterns. Fringe correction methods found in
the literature are either specific to the instrument or assume
a global fringe period (e.g., Malumuth et al. 2003a,b; Mellau
& Winnewisser 1995). However, in most cases the pattern’s
period varies over the image, making global techniques like
Fourier filtering less than satisfactory.

Here we present an algorithm that uses the wavelet trans-
form, a local spectral technique (e.g., Starck & Murtagh 2002;
Torrence & Compo 1998). This transform is linear. Hence,
we can isolate the fringe pattern in wavelet space, do an in-
verse transform, and then obtain a clean image by subtracting
this reconstructed fringe pattern. The challenge is to do this
correctly in the presence of noise.

We implemented our algorithm in the Interactive Data Lan-
guage (IDL, a product of Research System Inc., Boulder, Col-
orado). The code (named “defringeflat”) is not specific to any
instrument and includes tutorial documentation. It is available
under the GNU General Public License from our websites1 or
as an electronic attachment to this paper.

Section 2 describes the algorithm. Section 3 discusses per-
formance in the presence of noise. Finally, Section 4 sum-
marizes the benefits and limitations, and presents our conclu-
sions.

2. ALGORITHM

Electronic address: pato@astro.cornell.edu
Electronic address: jh@oobleck.astro.cornell.edu

1 http://www.das.uchile.cl/∼pato/sw/ or
http://oobleck.astro.cornell.edu/jh/ast/software.html

The main steps in our procedure are listed in Table 1. Fig-
ures 1 – 7 illustrate the steps of the algorithm using an ex-
ample flat field. Their captions contain details regarding the
example array, while the main text only refers to the algorithm
in general. The example flat field is included in the defringe-
flat package.

We assume that the change in fringe period is smooth across
the columns. The period must be at least several pixels, but
may not exceed ∼ 1/4 of the image width. Prior to applying
the algorithm, all borders whose values are not consistent with
the image must be cropped, and the image should be oriented
such that the nodes of the fringe pattern align mostly with the
columns.

STEP I. ENHANCED ROW AND WAVELET TRANSFORM

For each image row we combine several surrounding rows
to suppress random noise and remove bad pixels. To do
this, we replace each pixel in the row with the median of a
1× n subimage centered on the pixel and traversing n rows
(bin width, hereafter). We then subtract a linear fit from the
median-averaged row to obtain an enhanced row (Figure 2).
This significantly lowers the wavelet amplitudes at small pe-
riods, allowing the next step to proceed more efficiently.

We then compute the wavelet transform of each enhanced
row. There are several wavelet basis functions to choose from,
but this algorithm requires a complex basis. We used the Mor-
let wavelet because its functional form makes it well suited for
smoothly varying periods and because it is compact in the fre-
quency domain. The result for each row is a two-dimensional
(2D), complex array, whose two dimensions are column num-
ber and period. Steps II and III are computed over the com-
plex array amplitudes (wavelet array, hereafter). The phases
of the complex array must be stored for use in step IV. We
now have 3 dimensions: row, column, and period.

STEP II. PARAMETRIC FIT OF FRINGE TRANSFORM

At the period of the fringe pattern, the wavelet array will
contain a prominent fringe transform pattern traversing the
columns. Its amplitude depends on the amplitude of the fringe
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pattern (Figure 3). This algorithm’s success rests on our abil-
ity to distinguish this feature from the background noise level
of the wavelet array. The fringe transform may vanish at par-
ticular positions, but it should be clearly distinguishable in
most of the array. Improved sampling in period can be ob-
tained by interpolating or by decreasing the spacing between
discrete scales in the wavelet transform. The latter approach is
more accurate but demands more computer resources. Hence,
a compromise should be chosen.

We next fit the fringe transform (Figure 4). Starting from
a reference column, the fringe profile is isolated by finding
the first local minima on both sides of the reference period.
Then, either the actual data (trueshape) or a parametric fit can
be used to represent the profile within the minima. Only the
latter approach will allow execution of the optional Step III,
though. The values of the profile must be zero outside the
fringe transform. Inside, on the other hand, it is recommended
that the fringe transform profile exclude a background level
(attributable to non-fringe image components). The highest
point in the profile is used as the new reference period for the
neighbor column. The procedure is repeated for the whole
fringe transform, extending in both directions from the refer-
ence column to the cone of influence (COI) boundary, beyond
which the wavelet values are contaminated by edge effects.

To fit the profile we have experimented with an extraction
of the true shape of the profile, plain Gaussian fits with vari-
able center (GVC), and Gaussian functions in which the cen-
ter is fixed at the maximum height (GFC). Both Gaussian al-
ternatives were considered without a constant background pa-
rameter (noback), and with this parameter. In the latter case,
the background value can be kept or not when reconstructing
(keep and nokeep, respectively). In total, we tried 6 parametric
fits (that can be smoothed or not in step III) and 2 trueshape
fits, for a total of 14 fits. The Gaussian shape is chosen not
only because it is a natural choice to fit a peak, but also be-
cause it is the frequency-domain representation of the Morlet
wavelet. The relative fringe-removal efficiency of these fits
and of trueshape is discussed in Section 3.

STEP III. OPTIONAL PARAMETER SMOOTHING

If a functional parametric fit was used in the previous step,
one can reduce the effects of noise by forcing the recon-
structed fringe’s parameters to vary smoothly. After repeating
Steps I and II for every row, a 2D array is obtained for each
of the fit parameters. First, we “patch” each of the parame-
ter arrays by finding outliers that are beyond a given number
of standard deviations from the neighborhood median and re-
placing them by that median value. Then, we smooth the array
with a boxcar filter. Figure 5 shows the results.

STEP IV. RECONSTRUCTION OF FRINGE PATTERN

We next evaluate the parameters to obtain the fringe’s
wavelet amplitudes (Figure 3). Far from the reconstructed
fringe transform, the amplitude must be zero, because any
non-zero value there will cause unwanted noise in the recon-
structed fringe. In particular, if a keep method is chosen, the
reconstructed amplitude is set to zero outside the local min-
ima. Finally, we apply an inverse wavelet transform to the re-
constructed wavelet amplitude and the corresponding phases
from Step I.

We repeat these steps for every row to obtain the image’s
isolated fringe pattern (Figure 6). Due to the optional smooth-
ing, the method to obtain the enhanced rows, and the COI

boundary, the recovered fringe pattern will have smaller bor-
ders than the original image. The fringe pattern can now be
subtracted from the original image (Figure 7).

3. PERFORMANCE TESTS

The ratio of fringe pattern amplitude to the pixel-to-pixel
variation (or noise) level varies among different instruments.
We tested the algorithm’s performance at different noise lev-
els by using a synthetic image consisting of a fringe pattern,
a background intensity, and random noise with a Gaussian
distribution that mimics pixel-to-pixel flat-field variations and
photon noise.

The fringe pattern was created using an analytic function
that mimics the pattern in our example image. Its functional
form is

F(x,y) = Asin(ν(x,y)x +φ(y)),
where x,y are the position indices in the array, A is the am-
plitude (which we keep constant), and φ() and ν() are linear
functions fitted to the phase and frequency, respectively, of
our example’s fringe. Note that there is no reason for A to be
constant in a real image. The background level is a double-
linear function in both x and y directions and has an edge
taper.

We define noise strength as the standard deviation of the
Gaussian noise divided by the standard deviation of the noise-
less fringe pattern (2−1/2A, due to its sinusoidal nature). Fig-
ure 8 shows the fraction of remnant fringe after running the
algorithm on simulated data with different fitting functions
and varying noise strength. The remnant fringe level is not
strongly dependent on noise strength and all methods show
very similar behavior with slight numerical differences when
the noise strength is below ≈ 11 for noback methods and
below ≈ 14 otherwise. However, GFC consistently gives
the best results in all cases, even improving at high noise
levels when smoothing. Above noise strength of ≈ 11 (or
approx14), and only in some of the test runs, spikes begin
to appear in the remaining fringe fraction for methods other
than trueshape. Most of the methods remove over 95% of the
fringe at noise strength ≈ 0.5 and over 55% at noise strength
≈ 9 (equivalent to Figure 1’s noise strength). The lower plot
of Figure 8 confirms the intuitive result that the method yields
better absolute results for smaller initial fringe amplitudes.

Figure 9 shows the effect of varying the bin width. If the
width is too small when computing the enhanced row, the
noise is insufficiently suppresed. For low noise, a bin width
that is too large will begin to average out the fringe.

The algorithm is mainly limited by the degree to which the
analytic profile fit function mimics the data. Figure 10 shows
an example of a difficult profile, which gives very different
fits when using the different fitting functions. Another source
of error is the potential for the algorithm to miss the correct
trace in the presence of high noise in the wavelet array (Figure
11).

Due to the factors listed in Step IV, the reconstructed fringe
pattern is smaller than the input data. For the example of Fig-
ure 1 this area is ≈ 85% of the cropped input image, or over
90% if only considering the pixels lost for each surviving row,
on average.

4. CONCLUSIONS

We have developed an algorithm that removes fringe pat-
terns from 2D images while preserving other patterns. The al-
gorithm is especially useful for cleaning flat fields if the fringe
pattern varies between the flat and the object data.
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TABLE 1
STEPS OF DEFRINGING ALGORITHM

Step Description Figure

Original image with fringe 1
FOR EACH ROW

I ⇒ Compute enhanced row 2
⇒ Compute wavelet transform 3
⇒ FOR EACH PIXEL IN ROW

II =⇒ Fit fringe transform’s profile 4
FOR THE WHOLE ARRAY

III ⇒ Smooth fit parameters (optional) 5
FOR EACH ROW

IV ⇒ Reconstruct wavelet array 3
⇒ Inverse transform 3, 6
FOR THE WHOLE ARRAY
⇒ Subtract fringe pattern to obtain clean image 7

There are three main limitations of this procedure. First,
the shape of a fringe in wavelet space may be much more
complicated than any reasonable fitting function, resulting in
a partially-corrected fringe. Second, to be able to follow the
trace, the change in the fringe’s period must be smooth. Fi-
nally, there is a region along the borders where the fringe pat-
tern cannot be recovered.

A potential for improvement exists if a method can be found
to fit the entire fringe transform pattern simultaneously in the
3D wavelet space of row, column and period. The 2D wavelet
transform may be more appropriate for this approach.

Our IDL implementation of this algorithm and its documen-

tation appear as an electronic supplement to this article. Up-
dated versions are available on the authors’ websites or by
email request.

This material is based upon work supported by the Na-
tional Aeronautics and Space Administration under Grant No.
NAG5-13154 issued through the Science Mission Directorate.
The example flat field was obtained from public archives of
the European Southern Observatory.

Facilities: VLT:Antu (ISAAC)
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FIG. 1.— Top: Sample image with fringes. Flat field was obtained with the ISAAC instrument at the VLT. Each of the numeric parameters indicated in the
captions from Figures 1 to 7 were found to be the most appropiate for this particular example, but will need to change for different images. Columns 901 to 1024,
and rows 0-149 and 951-1024, are vignetted and thus are cropped before analysis. Periodicity can be estimated by eye at ∼ 40 pixels in the center of the image.
Bottom: Middle (512th) row.
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FIG. 2.— Top: Enhanced rows. Each pixel is first replaced by the median average of the 41 closest pixels in the vertical direction. A linear fit to each row
is then subtracted. The fringe pattern is enhanced and some bad pixels have been removed. Note that the usable data area is reduced by 20 rows on the top and
bottom because of the averaging. Bottom: Middle (512th) row.
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FIG. 3.— Wavelet transform of an enhanced row. In the center plots, the dotted line marks the cone of influence (COI); wavelet values below this boundary
should not be trusted. The dashed line shows the fitted trace. Plot a: Middle enhanced row of Figure 2. Plot b: Amplitude of the Morlet wavelet transform of
plot (a). The wavelet is interpolated in period by a spline from the period sampling of the transform, and the fringe transform, a coherent pattern corresponding
to a fringe with a period of 35 pixels, is clearly visible. Plot c: Reconstructed fringe transform using a Gaussian fit (c.f. Figure 4). Plot d: Fringe pattern after
applying an inverse wavelet transform to plot (c), plotted over the input data.
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FIG. 4.— Profile fitting that is repeated for each column. Crosses are the amplitude of the wavelet points, solid lines are the fitted profiles, and dashed line is
the background. Top: Trueshape profile; dotted area shows the profile that will be reconstructed after subtracting the indicated background. Bottom: Gaussian fit
with background.
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FIG. 5.— Gaussian height parameter smoothing. Top: Gaussian fit height parameter for central portion of example image. Middle: Parameter after replacing
all values more than ±1.5σ from the local median level (patched array). Bottom: Patched array after smoothing with a 19-pixel boxcar filter. This procedure is
repeated for each of the other Gaussian fit parameters.
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FIG. 6.— Top: Reconstructed fringe pattern (c.f. bottom panel of Figure 3). Bottom: Middle (512th) row.
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FIG. 7.— Top: Cleaned image. Flat field of Figure 1 minus the fringe pattern of Figure 6. Note that some of the edges remain uncorrected (see text). Bottom:
Middle (512th) row.
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FIG. 8.— Remaining fringe for varying noise strengths. Only 6 of the 14 methods are shown above, for clarity. Omitted methods are similar to plotted methods
and fall within the range of traces shown. The two nokeep methods give the best results, with GFC being more consistent at high noise. In general, methods
without background give similar results for low noise strength, but are worse than their counterparts with background for high noise strength. Spikes at high
noise levels are from random noise that tricks different methods, as shown in Figures 10 and 11. For a given method and noise level, spikes only appear in some
of the test runs. Trueshape never shows spikes. Top: Fraction of fringe remaining. Bottom: Absolute fringe remaining when noise level is scaled to 1.
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FIG. 9.— Remaining fringe for different enhanced-row bin widths. The panels show same synthetic fringe pattern as in Figure 8 at three selected noise levels.
Same line styles as in Figure 8.
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FIG. 10.— Different fitting methods applied to a profile with a complicated shape. Such shapes are due to noise and are the main limiting factor for this
algorithm. This profile comes from the fringe transform for row 798, column 627 of our example array. Crosses show the data points, while the solid line is the
interpolated profile. Other lines are explained in the key. Note that the profiles are only fit within the local minima at both sides of the reference period.
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FIG. 11.— Example of missed trace. Top: Wavelet array from row 798 of Figure 2. Around column 650 the trace goes in the wrong direction, towards short
period, and disappears around column 720. Bottom: Wavelet array from row 799 of Figure 2. Array is similar to top plot but now the trace is correct through the
last column.


